662 research outputs found

    Ghost contributions to charmonium production in polarized high-energy collisions

    Full text link
    In a previous paper [Phys. Rev. D 68, 034017 (2003)], we investigated the inclusive production of prompt J/psi mesons in polarized hadron-hadron, photon-hadron, and photon-photon collisions in the factorization formalism of nonrelativistic quantum chromodynamics providing compact analytic results for the double longitudinal-spin asymmetry A_{LL}. For convenience, we adopted a simplified expression for the tensor product of the gluon polarization four-vector with its charge conjugate, at the expense of allowing for ghost and anti-ghosts to appear as external particles. While such ghost contributions cancel in the cross section asymmetry A_{LL} and thus were not listed in our previous paper, they do contribute to the absolute cross sections. For completeness and the reader's convenience, they are provided in this addendum.Comment: 5 page

    Four-loop quark form factor with quartic fundamental colour factor

    Get PDF
    We analytically compute the four-loop QCD corrections for the colour structure (dFabcd)2(d_F^{abcd})^2 to the massless non-singlet quark form factor. The computation involves non-trivial non-planar integral families which have master integrals in the top sector. We compute the master integrals by introducing a second mass scale and solving differential equations with respect to the ratio of the two scales. We present details of our calculational procedure. Analytical results for the cusp and collinear anomalous dimensions, and the finite part of the form factor are presented. We also provide analytic results for all master integrals expanded up to weight eight.Comment: 16 pages, 2 figure

    Three-loop massive form factors: complete light-fermion and large-NcN_c corrections for vector, axial-vector, scalar and pseudo-scalar currents

    Get PDF
    We compute the three-loop QCD corrections to the massive quark form factors with external vector, axial-vector, scalar and pseudo-scalar currents. All corrections with closed loops of massless fermions are included. The non-fermionic part is computed in the large-NcN_c limit, where only planar Feynman diagrams contribute.Comment: 33 page

    Supersymmetric Corrections to the Threshold Production of Top Quark Pairs

    Full text link
    In this paper we investigate supersymmetric effects to the threshold production cross section of top quark pairs in electron positron annihilation. In particular, we consider the complete one-loop corrections from the strong and weak sector of the Minimal Supersymmetric Standard Model.Comment: 18 pages, 7 figure

    Gauge Coupling Beta Functions in the Standard Model to Three Loops

    Full text link
    In this paper we compute the three-loop corrections to the beta functions of the three gauge couplings in the Standard Model of particle physics using the minimal subtraction scheme and taking into account Yukawa and Higgs self couplings.Comment: 4 pages, 1 figure, v2: minor changes, references adde

    Four-loop beta function and mass anomalous dimension in Dimensional Reduction

    Full text link
    Within the framework of QCD we compute renormalization constants for the strong coupling and the quark masses to four-loop order. We apply the DR-bar scheme and put special emphasis on the additional couplings which have to be taken into account. This concerns the epsilon-scalar--quark Yukawa coupling as well as the vertex containing four epsilon-scalars. For a supersymmetric Yang Mills theory, we find, in contrast to a previous claim, that the evanescent Yukawa coupling equals the strong coupling constant through three loops as required by supersymmetry.Comment: 15 pages, fixed typo in Eq. (18

    Renormalization constants and beta functions for the gauge couplings of the Standard Model to three-loop order

    Full text link
    We compute the beta functions for the three gauge couplings of the Standard Model in the minimal subtraction scheme to three loops. We take into account contributions from all sectors of the Standard Model. The calculation is performed using both Lorenz gauge in the unbroken phase of the Standard Model and background field gauge in the spontaneously broken phase. Furthermore, we describe in detail the treatment of γ5\gamma_5 and present the automated setup which we use for the calculation of the Feynman diagrams. It starts with the generation of the Feynman rules and leads to the bare result for the Green's function of a given process.Comment: 44 pages, 9 figures; v2: sign in eq.(29) corrected; final result unchange

    Correlation Time-of-flight Spectrometry of Ultracold Neutrons

    Full text link
    The fearures of the correlation method used in time-of-flight spectrometry of ultracold neutrons are analyzed. The time-of-flight spectrometer for the energy range of ultracold neutrons is described, and results of its testing by measuring spectra of neutrons passing through interference filters are presented.Comment: 16 pages, 5 figure
    corecore