703 research outputs found
Formation and Structure of a Current Sheet in Pulsed-Power Driven Magnetic Reconnection Experiments
We describe magnetic reconnection experiments using a new, pulsed-power
driven experimental platform in which the inflows are super-sonic but
sub-Alfv\'enic.The intrinsically magnetised plasma flows are long lasting,
producing a well-defined reconnection layer that persists over many
hydrodynamic time scales.The layer is diagnosed using a suite of high
resolution laser based diagnostics which provide measurements of the electron
density, reconnecting magnetic field, inflow and outflow velocities and the
electron and ion temperatures.Using these measurements we observe a balance
between the power flow into and out of the layer, and we find that the heating
rates for the electrons and ions are significantly in excess of the classical
predictions. The formation of plasmoids is observed in laser interferometry and
optical self-emission, and the magnetic O-point structure of these plasmoids is
confirmed using magnetic probes.Comment: 14 pages, 12 figures. Accepted for publication in Physics of Plasma
An Experimental Platform for Pulsed-Power Driven Magnetic Reconnection
We describe a versatile pulsed-power driven platform for magnetic
reconnection experiments, based on exploding wire arrays driven in parallel
[Suttle, L. G. et al. PRL, 116, 225001]. This platform produces inherently
magnetised plasma flows for the duration of the generator current pulse (250
ns), resulting in a long-lasting reconnection layer. The layer exists for long
enough to allow evolution of complex processes such as plasmoid formation and
movement to be diagnosed by a suite of high spatial and temporal resolution
laser-based diagnostics. We can access a wide range of magnetic reconnection
regimes by changing the wire material or moving the electrodes inside the wire
arrays. We present results with aluminium and carbon wires, in which the
parameters of the inflows and the layer which forms are significantly
different. By moving the electrodes inside the wire arrays, we change how
strongly the inflows are driven. This enables us to study both symmetric
reconnection in a range of different regimes, and asymmetric reconnection.Comment: 14 pages, 9 figures. Version revised to include referee's comments.
Submitted to Physics of Plasma
Recommended from our members
A novel evolutionary strategy revealed in the Phaeoviruses
Phaeoviruses infect the brown algae, which are major contributors to primary production of coastal waters and estuaries. They exploit a Persistent evolutionary strategy akin to a K- selected life strategy via genome integration and are the only known representatives to do so within the giant algal viruses that are typified by r- selected Acute lytic viruses. In screening the genomes of five species within the filamentous brown algal lineage, here we show an unprecedented diversity of viral gene sequence variants especially amongst the smaller phaeoviral genomes. Moreover, one variant shares features from both the two major sub-groups within the phaeoviruses. These phaeoviruses have exploited the reduction of their giant dsDNA genomes and accompanying loss of DNA proofreading capability, typical of an Acute life strategist, but uniquely retain a Persistent life strategy
Recommended from our members
The influence of soil communities on the temperature sensitivity of soil respiration
Soil respiration represents a major carbon flux between terrestrial ecosystems and the atmosphere, and is expected to accelerate under climate warming. Despite its importance in climate change forecasts, however, our understanding of the effects of temperature on soil respiration (RS) is incomplete. Using a metabolic ecology approach we link soil biota metabolism, community composition and heterotrophic activity, to predict RS rates across five biomes. We find that accounting for the ecological mechanisms underpinning decomposition processes predicts climatological RS variations observed in an independent dataset (n = 312). The importance of community composition is evident because without it RS is substantially underestimated. With increasing temperature, we predict a latitudinal increase in RS temperature sensitivity, with Q10 values ranging between 2.33 ±0.01 in tropical forests to 2.72 ±0.03 in tundra. This global trend has been widely observed, but has not previously been linked to soil communities
Underwood Memorial Lecture Minerals in Livestock Production
ABSTRACT: The impact of mineral imbalances on livestock production has been and will continue to be reduced by addressing the three components of the question 'How much?': how much can the diet provide; how much does the animal need; how can we gauge from the animal the size of any deficit between supply and demand? Proper definition of supply and demand for Ca under steady state conditions (e.g. pre-partum) may facilitate control of the unsteady state (e.g. milk fever post-partum) and maximise the utilisation of other elements in non-ruminants (P, Mn and Zn). Better definition of ruminant needs for Mg in factorial models that allow for species and diet effects on the powerful antagonism of Mg absorption by K will lessen the incidence of Mg disorders. Wider use of marginal bands for biochemical indices of mineral status in animals may slow the speed of diagnosis but greatly improve its accuracy. The best indicator of imbalance is the presence or absence of individual responses in health or performance to specific mineral interventions. The best short-term preventive measure is mapping areas of maximal risk of deprivation. The best long-term preventive measure may reside in tapping the potential for genetic improvement in tolerance of mineral imbalance
Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry
Formation and structure of a current sheet in pulsed-power driven magnetic reconnection experiments
We describe magnetic reconnection experiments using a new, pulsed-power driven experimental platform in which the inflows are super-sonic but sub-Alfvénic. The intrinsically magnetised plasma flows are long lasting, producing a well-defined reconnection layer that persists over many hydrodynamic time scales. The layer is diagnosed using a suite of high resolution laser based diagnostics, which provide measurements of the electron density, reconnecting magnetic field, inflow and outflow velocities, and the electron and ion temperatures. Using these measurements, we observe a balance between the power flow into and out of the layer, and we find that the heating rates for the electrons and ions are significantly in excess of the classical predictions. The formation of plasmoids is observed in laser interferometry and optical self-emission, and the magnetic O-point structure of these plasmoids is confirmed using magnetic probes.Engineering and Physical Sciences Research Council (Grant EP/N013379/1)United States. Department of Energy (Awards DE-F03-02NA00057)United States. Department of Energy (Awards DE-SC-0001063)National Science Foundation (U.S.) (Award DE-sc0016215
The effect of extrinsic mortality on genome size evolution in prokaryotes
Mortality has a significant role in prokaryotic ecology and evolution, yet the impact of variations in extrinsic mortality on prokaryotic genome evolution has received little attention. We used both mathematical and agent-based models to reveal how variations in extrinsic mortality affect prokaryotic genome evolution. Our results suggest that the genome size of bacteria increases with increased mortality. A high extrinsic mortality increases the pool of free resources and shortens life expectancy, which selects for faster reproduction, a phenotype we called ‘scramblers’. This phenotype is realised by the expansion of gene families involved in nutrient acquisition and metabolism. In contrast, a low mortality rate increases an individual’s life expectancy, which results in natural selection favouring tolerance to starvation when conditions are unfavourable. This leads to the evolution of small, streamlined genomes (‘stayers’). Our models predict that large genomes, gene family expansion and horizontal gene transfer should be observed in prokaryotes occupying ecosystems exposed to high abiotic stress, as well as those under strong predator- and/or pathogen-mediated selection. A comparison of genome size of cyanobacteria in relatively stable marine versus more turbulent freshwater environments corroborates our predictions, although other factors between these environments could also be responsible
- …
