6,814 research outputs found
Recommended from our members
Analysis of the elements and metals in multiple generations of electronic cigarette atomizers.
BackgroundSince their release in 2004, electronic cigarettes (ECs) and their atomizers have undergone significant evolution.ObjectiveThe purpose of this study was to evaluate and compare the elemental/metal composition of atomizers in cartomizer and tank style ECs produced over a 5-year period.MethodsPopular cartomizer and tank models of ECs were dissected and photographed using a stereoscopic microscope, and elemental analysis of EC atomizers was done using scanning electron microscopy coupled with energy dispersive x-ray spectroscopy.ResultsEight elements/metals were found in most products across and within brands purchased at different times. These included chromium, nickel, copper, silver, tin, silicon, aluminum, and zinc. Iron and lead were found in some but not all products, while manganese, cobalt, molybdenum, titanium, and tungsten were only found in a few of the products. The metals used in various components were often similar in cartomizer and tank models. Filaments were usually chromium and nickel (nichrome), although in some newer products, the filament also contained iron, copper, and manganese. The thick wire in earlier products was usually copper coated with silver, while in some newer products, the thick wire was predominantly nickel. In all products, the wick was silica, and sheaths, when present, were fiberglass (silicon, oxygen, calcium, aluminum, magnesium). Wire-to-wire joints were either brazed or clamped with brass (copper and zinc), and air-tube-to-thick wire joints, when present, were usually soldered with tin. Tank style products generally lacked a thick wire and sheaths.ConclusionIn general, atomizer components in ECs were remarkably similar over time and between brands. Certain elements/metals were consistently found in most models from all generations, and these should be studied carefully to determine if their transfer to aerosols affects user's health and if their accumulation in trash affects the environment
Reducing Stigma toward the Transgender Community: An Evaluation of a Humanizing and Perspective-Taking Intervention
Transgender (TG) individuals are an understudied group at high risk of experiencing discrimination and associated adverse mental health outcomes (IOM, 2011). Although many studies demonstrate that contact reduces negative attitudes toward out-groups, few studies have examined the link between contact and attitudes toward the TG community (Hill & Willoughby, 2005; Walchet al., 2012). This study represents one of the first attempts to understand how to effectively reduce stigma toward the TG community. Results indicate that education alone is not enough to change attitudes; in fact, there is some evidence that associating transgenderism with psychopathology may heighten stigma. Consistent with prior research on stigma towards the mentally ill, the current study suggests that both exposure to intimate media depictions of the “other” (Reinke et al., 2004) and perspective-taking (Mann & Himelein, 2008) could strengthen educational campaigns designed to combat stigma
A causal look into the quantum Talbot effect
A well-known phenomenon in both optics and quantum mechanics is the so-called
Talbot effect. This near field interference effect arises when infinitely
periodic diffracting structures or gratings are illuminated by highly coherent
light or particle beams. Typical diffraction patterns known as quantum carpets
are then observed. Here the authors provide an insightful picture of this
nonlocal phenomenon as well as its classical limit in terms of Bohmian
mechanics, also showing the causal reasons and conditions that explain its
appearance. As an illustration, theoretical results obtained from diffraction
of thermal He atoms by both N-slit arrays and weak corrugated surfaces are
analyzed and discussed. Moreover, the authors also explain in terms of what
they call the Talbot-Beeby effect how realistic interaction potentials induce
shifts and distortions in the corresponding quantum carpets.Comment: 12 pages, 6 figure
A mathematical model of a single main rotor helicopter for piloted simulation
A mathematical model, suitable for piloted simulation of the flying qualities of helicopters, is a nonlinear, total force and moment model of a single main rotor helicopter. The model has ten degrees of freedom: six rigid body, three rotor flapping, and the rotor rotational degrees of freedom. The rotor model assumes rigid blades with rotor forces and moments radially integrated and summed about the azimuth. The fuselage aerodynamic model uses a detailed representation over a nominal angle of attack and sideslip range of + or - 15 deg., as well as a simplified curve fit at large angles of attack or sideslip. Stabilizing surface aerodynamics are modeled with a lift curve slope between stall limits and a general curve fit for large angles of attack. A generalized stability and control augmentation system is described. Additional computer subroutines provide options for a simplified engine/governor model, atmospheric turbulence, and a linearized six degree of freedom dynamic model for stability and control analysis
Angular velocity distribution of a granular planar rotator in a thermalized bath
The kinetics of a granular planar rotator with a fixed center undergoing
inelastic collisions with bath particles is analyzed both numerically and
analytically by means of the Boltzmann equation. The angular velocity
distribution evolves from quasi-gaussian in the Brownian limit to an algebraic
decay in the limit of an infinitely light particle. In addition, we compare
this model with a planar rotator with a free center. We propose experimental
tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure
Aerosol major ion record at Mount Washington
This study examined the seasonal cycles and regional-scale meteorological controls on the chemical properties of bulk aerosols collected from 1999 to 2004 at Mount Washington, the highest peak in the northeastern United States. The concentrations of NH4+ and SO42− peaked during summer months. The pattern for aerosol NO3− was more complicated with relatively high median concentrations characterizing spring and summer months, but with major elevated events occurring during fall, winter, and spring. The seasonal relationship between NH4+ and SO42− indicated that during warmer months a mixture of (NH4)2SO4 and NH4HSO4 was present, while it was mainly the latter in winter. More acidity and higher concentrations of the major species were generally associated with winds from the southwest and west sectors. The highest (≥95th percentile) concentrations of SO42− and NH4+ were associated with air mass transport from major upwind source regions in the Midwest and along the eastern seaboard. The ionic composition and seasonal cycle observed at Mount Washington were similar to those measured at other northeastern sites, but the range and average concentrations were much lower. These differences were exaggerated during wintertime. Included in this paper are several Eulerian case studies of SO2 conversion to SO42− during transit from Whiteface Mountain, New York, to Mount Washington. The calculations suggest a gas-phase SO2 oxidation rate of ∼1–2% per hour and demonstrate the possibility of using these two sites to investigate the chemical evolution of air masses as they move from Midwestern source regions to northern New England
Double precision trajectory program /DPTRAJ 2.2C/
Four part program computes trajectory of space probe moving in solar system and subject to variety of forces
Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb
During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 μBq m−3 but found an average in the free troposphere of 107 μBq m−3. This average was elevated by a large number of very active (up to 405 μBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport
- …
