90 research outputs found
Functional Phenotypic Rescue of Caenorhabditis elegans Neuroligin-Deficient Mutants by the Human and Rat NLGN1 Genes
Neuroligins are cell adhesion proteins that interact with neurexins at the synapse. This interaction may contribute to differentiation, plasticity and specificity of synapses. In humans, single mutations in neuroligin encoding genes lead to autism spectrum disorder and/or mental retardation. Caenorhabditis elegans mutants deficient in nlg-1, an orthologue of human neuroligin genes, have defects in different behaviors. Here we show that the expression of human NLGN1 or rat Nlgn1 cDNAs in C. elegans nlg-1 mutants rescues the fructose osmotic strength avoidance and gentle touch response phenotypes. Two specific point mutations in NLGN3 and NLGN4 genes, involved in autistic spectrum disorder, were further characterized in this experimental system. The R451C allele described in NLGN3, was analyzed with both human NLGN1 (R453C) and worm NLG-1 (R437C) proteins, and both were not functional in rescuing the osmotic avoidance behavior and the gentle touch response phenotype. The D396X allele described in NLGN4, which produces a truncated protein, was studied with human NLGN1 (D432X) and they did not rescue any of the behavioral phenotypes analyzed. In addition, RNAi feeding experiments measuring gentle touch response in wild type strain and worms expressing SID-1 in neurons (which increases the response to dsRNA), both fed with bacteria expressing dsRNA for nlg-1, provided evidence for a postsynaptic in vivo function of neuroligins both in muscle cells and neurons, equivalent to that proposed in mammals. This finding was further confirmed generating transgenic nlg-1 deficient mutants expressing NLG-1 under pan-neuronal (nrx-1) or pan-muscular (myo-3) specific promoters. All these results suggest that the nematode could be used as an in vivo model for studying particular synaptic mechanisms with proteins orthologues of humans involved in pervasive developmental disorders
SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice
Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation
Gene expression biomarkers of response to citalopram treatment in major depressive disorder
There is significant variability in antidepressant treatment outcome, with ∼30–40% of patients with major depressive disorder (MDD) not presenting with adequate response even following several trials. To identify potential biomarkers of response, we investigated peripheral gene expression patterns of response to antidepressant treatment in MDD. We did this using Affymetrix HG-U133 Plus2 microarrays in blood samples, from untreated individuals with MDD (N=63) ascertained at a community outpatient clinic, pre and post 8-week treatment with citalopram, and used a regression model to assess the impact of gene expression differences on antidepressant response. We carried out technical validation of significant probesets by quantitative reverse transcriptase PCR and conducted central nervous system follow-up of the most significant result in post-mortem brain samples from 15 subjects who died during a current MDD episode and 11 sudden-death controls. A total of 32 probesets were differentially expressed according to response to citalopram treatment following false discovery rate correction. Interferon regulatory factor 7 (IRF7) was the most significant differentially expressed gene and its expression was upregulated by citalopram treatment in individuals who responded to treatment. We found these results to be concordant with our observation of decreased expression of IRF7 in the prefrontal cortex of MDDs with negative toxicological evidence for antidepressant treatment at the time of death. These findings point to IRF7 as a gene of interest in studies investigating genomic factors associated with antidepressant response
Turner syndrome and sexual differentiation of the brain: implications for understanding male-biased neurodevelopmental disorders
Turner syndrome (TS) is one of the most common sex chromosome abnormalities. Affected individuals often show a unique pattern of cognitive strengths and weaknesses and are at increased risk for a number of other neurodevelopmental conditions, many of which are more common in typical males than typical females (e.g., autism and attention-deficit hyperactivity disorder). This phenotype may reflect gonadal steroid deficiency, haploinsufficiency of X chromosome genes, failure to express parentally imprinted genes, and the uncovering of X chromosome mutations. Understanding the contribution of these different mechanisms to outcome has the potential to improve clinical care for individuals with TS and to better our understanding of the differential vulnerability to and expression of neurodevelopmental disorders in males and females. In this paper, we review what is currently known about cognition and brain development in individuals with TS, discuss underlying mechanisms and their relevance to understanding male-biased neurodevelopmental conditions, and suggest directions for future research
A novel pore-region mutation, c.887G > A (p.G296D) in KCNQ4, causing hearing loss in a Chinese family with autosomal dominant non-syndromic deafness 2
Cognitive, Behavioral, and Neural Consequences of Sex Chromosome Aneuploidy
The X chromosome has played a critical role in the development of sexually selected characteristics for over 300 million years, and during that time it has accumulated a disproportionate number of genes concerned with mental functions. There are relatively specific effects of X‐linked genes on social cognition, language, emotional regulation, visuospatial, and numerical skills. Many human X‐linked genes outside the X–Y pairing pseudoautosomal regions escape X‐inactivation. Dosage differences in the expression of such genes (which constitute at least 15% of the total) are likely to play an important role in male–female neural differentiation, and in cognitive deficits and behavioral characteristics, particularly in the realm of social communication, that are associated with sex chromosome aneuploidies
Active caspase-3 in the lens and its response to oxidative stress induced by in vivo exposure to UVR
Kinetics of TP53, CASP3 and GADD45 genes expression in the rat lens after in vivo exposure to subthreshold dose of UV‐B radiation
- …
