112 research outputs found

    Relativistic Hydrodynamics with General Anomalous Charges

    Full text link
    We consider the hydrodynamic regime of gauge theories with general triangle anomalies, where the participating currents may be global or gauged, abelian or non-abelian. We generalize the argument of arXiv:0906.5044, and construct at the viscous order the stress-energy tensor, the charge currents and the entropy current.Comment: 13 pages, Revte

    Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    Full text link
    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss the proper implementation of the QED axial anomaly, the (ambiguous) definition of chiral currents, and the calculation of the chiral magnetic effect. We show that this model correctly contains the so-called consistent anomaly, but requires the introduction of a (holographic) finite counterterm to yield the correct covariant anomaly. Introducing net chirality through an axial chemical potential, we find a nonvanishing vector current only before including this counterterm. This seems to imply the absence of the chiral magnetic effect in this model. On the other hand, for a conventional quark chemical potential and large magnetic field, which is of interest in the physics of compact stars, we obtain a nontrivial result for the axial current that is in agreement with previous calculations and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent conductivity at the end of section 4; references added; version to appear in JHE

    Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity

    Full text link
    The holographic charged fluid with anomalous current in Einstein-Maxwell gravity has been generalized from the infinite boundary to the finite cutoff surface by using the gravity/fluid correspondence. After perturbing the boosted Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell gravity with the Chern-Simons term, we obtain the first order perturbative gravitational and Maxwell solutions, and calculate the stress tensor and charged current of the dual fluid at finite cutoff surfaces which contains undetermined parameters after demanding regularity condition at the future horizon. We adopt the Dirichlet boundary condition and impose the Landau frame to fix these parameters, finally obtain the dependence of transport coefficients in the dual stress tensor and charged current on the arbitrary radical cutoff rcr_c. We find that the dual fluid is not conformal, but it has vanishing bulk viscosity, and the shear viscosity to entropy density ratio is universally 1/4π1/4\pi. Other transport coefficients of the dual current turns out to be cutoff-dependent. In particular, the chiral vortical conductivity expressed in terms of thermodynamic quantities takes the same form as that of the dual fluid at the asymptotic AdS boundary, and the chiral magnetic conductivity receives a cutoff-dependent correction which vanishes at the infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos corrected, version accepted for publication in JHE

    Isometric Embeddings and Noncommutative Branes in Homogeneous Gravitational Waves

    Full text link
    We characterize the worldvolume theories on symmetric D-branes in a six-dimensional Cahen-Wallach pp-wave supported by a constant Neveu-Schwarz three-form flux. We find a class of flat noncommutative euclidean D3-branes analogous to branes in a constant magnetic field, as well as curved noncommutative lorentzian D3-branes analogous to branes in an electric background. In the former case the noncommutative field theory on the branes is constructed from first principles, related to dynamics of fuzzy spheres in the worldvolumes, and used to analyse the flat space limits of the string theory. The worldvolume theories on all other symmetric branes in the background are local field theories. The physical origins of all these theories are described through the interplay between isometric embeddings of branes in the spacetime and the Penrose-Gueven limit of AdS3 x S3 with Neveu-Schwarz three-form flux. The noncommutative field theory of a non-symmetric spacetime-filling D-brane is also constructed, giving a spatially varying but time-independent noncommutativity analogous to that of the Dolan-Nappi model.Comment: 52 pages; v2: References adde

    Universal thermal and electrical conductivity from holography

    Full text link
    It is known from earlier work of Iqbal, Liu (arXiv:0809.3808) that the boundary transport coefficients such as electrical conductivity (at vanishing chemical potential), shear viscosity etc. at low frequency and finite temperature can be expressed in terms of geometrical quantities evaluated at the horizon. In the case of electrical conductivity, at zero chemical potential gauge field fluctuation and metric fluctuation decouples, resulting in a trivial flow from horizon to boundary. In the presence of chemical potential, the story becomes complicated due to the fact that gauge field and metric fluctuation can no longer be decoupled. This results in a nontrivial flow from horizon to boundary. Though horizon conductivity can be expressed in terms of geometrical quantities evaluated at the horizon, there exist no such neat result for electrical conductivity at the boundary. In this paper we propose an expression for boundary conductivity expressed in terms of geometrical quantities evaluated at the horizon and thermodynamical quantities. We also consider the theory at finite cutoff outside the horizon (arXiv:1006.1902) and give an expression for cutoff dependent electrical conductivity, which interpolates smoothly between horizon conductivity and boundary conductivity . Using the results about the electrical conductivity we gain much insight into the universality of thermal conductivity to viscosity ratio proposed in arXiv:0912.2719.Comment: An appendix added discussing relation between boundary conductivity and universal conductivity of stretched horizon, version to be published in JHE

    Novel removal of Anthracene from oil-contaminated water by synthesized modified magnetic nano-particles

    Get PDF
    Novel magnetic nanoparticles (MNPs) modified with (3-mercaptopropyl)-trimethoxysilane (MPTMS), grafted with allyl glycidyl ether and coupled with beta naphthol, were prepared for removal of anthracene in aqueous solutions. The grafted MNPs were characterized by transmission electron microscopy (TEM), infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The modified MNPs contributed to enhancement of the adsorption capacity and were prepared by co-precipitation. The modified MNPs were characterized by TEM, FT-IR and TGA and the adsorption and kinetic behavior of anthracene on the modified MNPs was examined. It was shown that the nano-adsorbent optimized adsorption capacity is at pH 7. Three kinetics models: pseudo-first-order, pseudo-second-order, and intraparticle diffusion were used to investigate the adsorption mechanism of the anthracene onto the modified MNPs. The best fit was obtained for the pseudo-second-order model. The synthesized nano adsorbent can be considered as a new method for anthracene adsorption in contaminated water with the benefit of fast removal by applying a magnetic field

    Weak Field Black Hole Formation in Asymptotically AdS Spacetimes

    Full text link
    We use the AdS/CFT correspondence to study the thermalization of a strongly coupled conformal field theory that is forced out of its vacuum by a source that couples to a marginal operator. The source is taken to be of small amplitude and finite duration, but is otherwise an arbitrary function of time. When the field theory lives on Rd1,1R^{d-1,1}, the source sets up a translationally invariant wave in the dual gravitational description. This wave propagates radially inwards in AdSd+1AdS_{d+1} space and collapses to form a black brane. Outside its horizon the bulk spacetime for this collapse process may systematically be constructed in an expansion in the amplitude of the source function, and takes the Vaidya form at leading order in the source amplitude. This solution is dual to a remarkably rapid and intriguingly scale dependent thermalization process in the field theory. When the field theory lives on a sphere the resultant wave either slowly scatters into a thermal gas (dual to a glueball type phase in the boundary theory) or rapidly collapses into a black hole (dual to a plasma type phase in the field theory) depending on the time scale and amplitude of the source function. The transition between these two behaviors is sharp and can be tuned to the Choptuik scaling solution in Rd,1R^{d,1}.Comment: 50 pages + appendices, 6 figures, v2: Minor revisions, references adde

    Anomaly/Transport in an Ideal Weyl gas

    Full text link
    We study some of the transport processes which are specific to an ideal gas of relativistic Weyl fermions and relate the corresponding transport coefficients to various anomaly coefficients of the system. We propose that these transport processes can be thought of as arising from the continuous injection of chiral states and their subsequent adiabatic flow driven by vorticity. This in turn leads to an elegant expression relating the anomaly induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.Comment: 35 pages, JHEP forma

    The dynamics of quark-gluon plasma and AdS/CFT

    Full text link
    In these pedagogical lectures, we present the techniques of the AdS/CFT correspondence which can be applied to the study of real time dynamics of a strongly coupled plasma system. These methods are based on solving gravitational Einstein's equations on the string/gravity side of the AdS/CFT correspondence. We illustrate these techniques with applications to the boost-invariant expansion of a plasma system. We emphasize the common underlying AdS/CFT description both in the large proper time regime where hydrodynamic dynamics dominates, and in the small proper time regime where the dynamics is far from equilibrium. These AdS/CFT methods provide a fascinating arena interrelating General Relativity phenomenae with strongly coupled gauge theory physics.Comment: 35 pages, 3 figures. Lectures at the 5th Aegean summer school, `From gravity to thermal gauge theories: the AdS/CFT correspondence'. To appear in the proceedings in `Lecture Notes in Physics

    Electrified plasma in AdS/CFT correspondence

    Full text link
    We construct new gravity backgrounds holographic dual to neutral plasma with U(1) global symmetry in the presence of constant electric field, considering its full back-reactions to the metric. As the electric field and the induced current cause a net energy in-flow to the system, the plasma is continually heated up and the corresponding gravity solution has an expanding horizon. After proposing a consistent late-time expansion scheme, we present analytic solutions in the scheme up to next-leading order, and our solutions are new time-dependent solutions of 5D asymptotic AdS Einstein-Maxwell(-Chern-Simons) theory. To extract dual CFT stress tensor and U(1) current from the solutions, we perform a rigorous holographic renormalization of Einstein-Maxwell-Chern-Simons theory including full back-reactions, which can in itself be an interesting addition to literatures. As by-products, we obtain interesting modifications of energy-momentum/current Ward identities due to the U(1) symmetry and its triangle anomaly.Comment: 27 pages, no figure, v3, minor typos fixed, matches with published versio
    corecore