112 research outputs found
Relativistic Hydrodynamics with General Anomalous Charges
We consider the hydrodynamic regime of gauge theories with general triangle
anomalies, where the participating currents may be global or gauged, abelian or
non-abelian. We generalize the argument of arXiv:0906.5044, and construct at
the viscous order the stress-energy tensor, the charge currents and the entropy
current.Comment: 13 pages, Revte
Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model
In the chiral magnetic effect an imbalance in the number of left- and
right-handed quarks gives rise to an electromagnetic current parallel to the
magnetic field produced in noncentral heavy-ion collisions. The chiral
imbalance may be induced by topologically nontrivial gluon configurations via
the QCD axial anomaly, while the resulting electromagnetic current itself is a
consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain
limit is dual to large-N_c QCD, we discuss the proper implementation of the QED
axial anomaly, the (ambiguous) definition of chiral currents, and the
calculation of the chiral magnetic effect. We show that this model correctly
contains the so-called consistent anomaly, but requires the introduction of a
(holographic) finite counterterm to yield the correct covariant anomaly.
Introducing net chirality through an axial chemical potential, we find a
nonvanishing vector current only before including this counterterm. This seems
to imply the absence of the chiral magnetic effect in this model. On the other
hand, for a conventional quark chemical potential and large magnetic field,
which is of interest in the physics of compact stars, we obtain a nontrivial
result for the axial current that is in agreement with previous calculations
and known exact results for QCD.Comment: 35 pages, 4 figures, v2: added comments about frequency-dependent
conductivity at the end of section 4; references added; version to appear in
JHE
Holographic Charged Fluid with Anomalous Current at Finite Cutoff Surface in Einstein-Maxwell Gravity
The holographic charged fluid with anomalous current in Einstein-Maxwell
gravity has been generalized from the infinite boundary to the finite cutoff
surface by using the gravity/fluid correspondence. After perturbing the boosted
Reissner-Nordstrom (RN)-AdS black brane solution of the Einstein-Maxwell
gravity with the Chern-Simons term, we obtain the first order perturbative
gravitational and Maxwell solutions, and calculate the stress tensor and
charged current of the dual fluid at finite cutoff surfaces which contains
undetermined parameters after demanding regularity condition at the future
horizon. We adopt the Dirichlet boundary condition and impose the Landau frame
to fix these parameters, finally obtain the dependence of transport
coefficients in the dual stress tensor and charged current on the arbitrary
radical cutoff . We find that the dual fluid is not conformal, but it has
vanishing bulk viscosity, and the shear viscosity to entropy density ratio is
universally . Other transport coefficients of the dual current turns
out to be cutoff-dependent. In particular, the chiral vortical conductivity
expressed in terms of thermodynamic quantities takes the same form as that of
the dual fluid at the asymptotic AdS boundary, and the chiral magnetic
conductivity receives a cutoff-dependent correction which vanishes at the
infinite boundary.Comment: 19 pages, v2: references added, v3: typos corrected, v5: typos
corrected, version accepted for publication in JHE
Isometric Embeddings and Noncommutative Branes in Homogeneous Gravitational Waves
We characterize the worldvolume theories on symmetric D-branes in a
six-dimensional Cahen-Wallach pp-wave supported by a constant Neveu-Schwarz
three-form flux. We find a class of flat noncommutative euclidean D3-branes
analogous to branes in a constant magnetic field, as well as curved
noncommutative lorentzian D3-branes analogous to branes in an electric
background. In the former case the noncommutative field theory on the branes is
constructed from first principles, related to dynamics of fuzzy spheres in the
worldvolumes, and used to analyse the flat space limits of the string theory.
The worldvolume theories on all other symmetric branes in the background are
local field theories. The physical origins of all these theories are described
through the interplay between isometric embeddings of branes in the spacetime
and the Penrose-Gueven limit of AdS3 x S3 with Neveu-Schwarz three-form flux.
The noncommutative field theory of a non-symmetric spacetime-filling D-brane is
also constructed, giving a spatially varying but time-independent
noncommutativity analogous to that of the Dolan-Nappi model.Comment: 52 pages; v2: References adde
Universal thermal and electrical conductivity from holography
It is known from earlier work of Iqbal, Liu (arXiv:0809.3808) that the
boundary transport coefficients such as electrical conductivity (at vanishing
chemical potential), shear viscosity etc. at low frequency and finite
temperature can be expressed in terms of geometrical quantities evaluated at
the horizon. In the case of electrical conductivity, at zero chemical potential
gauge field fluctuation and metric fluctuation decouples, resulting in a
trivial flow from horizon to boundary. In the presence of chemical potential,
the story becomes complicated due to the fact that gauge field and metric
fluctuation can no longer be decoupled. This results in a nontrivial flow from
horizon to boundary. Though horizon conductivity can be expressed in terms of
geometrical quantities evaluated at the horizon, there exist no such neat
result for electrical conductivity at the boundary. In this paper we propose an
expression for boundary conductivity expressed in terms of geometrical
quantities evaluated at the horizon and thermodynamical quantities. We also
consider the theory at finite cutoff outside the horizon (arXiv:1006.1902) and
give an expression for cutoff dependent electrical conductivity, which
interpolates smoothly between horizon conductivity and boundary conductivity .
Using the results about the electrical conductivity we gain much insight into
the universality of thermal conductivity to viscosity ratio proposed in
arXiv:0912.2719.Comment: An appendix added discussing relation between boundary conductivity
and universal conductivity of stretched horizon, version to be published in
JHE
Novel removal of Anthracene from oil-contaminated water by synthesized modified magnetic nano-particles
Novel magnetic nanoparticles (MNPs) modified with (3-mercaptopropyl)-trimethoxysilane (MPTMS), grafted with allyl glycidyl ether and coupled with beta naphthol, were prepared for removal of anthracene in aqueous solutions. The grafted MNPs were characterized by transmission electron microscopy (TEM), infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). The modified MNPs contributed to enhancement of the adsorption capacity and were prepared by co-precipitation. The modified MNPs were characterized by TEM, FT-IR and TGA and the adsorption and kinetic behavior of anthracene on the modified MNPs was examined. It was shown that the nano-adsorbent optimized adsorption capacity is at pH 7. Three kinetics models: pseudo-first-order, pseudo-second-order, and intraparticle diffusion were used to investigate the adsorption mechanism of the anthracene onto the modified MNPs. The best fit was obtained for the pseudo-second-order model. The synthesized nano adsorbent can be considered as a new method for anthracene adsorption in contaminated water with the benefit of fast removal by applying a magnetic field
Weak Field Black Hole Formation in Asymptotically AdS Spacetimes
We use the AdS/CFT correspondence to study the thermalization of a strongly
coupled conformal field theory that is forced out of its vacuum by a source
that couples to a marginal operator. The source is taken to be of small
amplitude and finite duration, but is otherwise an arbitrary function of time.
When the field theory lives on , the source sets up a
translationally invariant wave in the dual gravitational description. This wave
propagates radially inwards in space and collapses to form a black
brane. Outside its horizon the bulk spacetime for this collapse process may
systematically be constructed in an expansion in the amplitude of the source
function, and takes the Vaidya form at leading order in the source amplitude.
This solution is dual to a remarkably rapid and intriguingly scale dependent
thermalization process in the field theory. When the field theory lives on a
sphere the resultant wave either slowly scatters into a thermal gas (dual to a
glueball type phase in the boundary theory) or rapidly collapses into a black
hole (dual to a plasma type phase in the field theory) depending on the time
scale and amplitude of the source function. The transition between these two
behaviors is sharp and can be tuned to the Choptuik scaling solution in
.Comment: 50 pages + appendices, 6 figures, v2: Minor revisions, references
adde
Anomaly/Transport in an Ideal Weyl gas
We study some of the transport processes which are specific to an ideal gas
of relativistic Weyl fermions and relate the corresponding transport
coefficients to various anomaly coefficients of the system. We propose that
these transport processes can be thought of as arising from the continuous
injection of chiral states and their subsequent adiabatic flow driven by
vorticity. This in turn leads to an elegant expression relating the anomaly
induced transport coefficients to the anomaly polynomial of the Ideal Weyl gas.Comment: 35 pages, JHEP forma
The dynamics of quark-gluon plasma and AdS/CFT
In these pedagogical lectures, we present the techniques of the AdS/CFT
correspondence which can be applied to the study of real time dynamics of a
strongly coupled plasma system. These methods are based on solving
gravitational Einstein's equations on the string/gravity side of the AdS/CFT
correspondence. We illustrate these techniques with applications to the
boost-invariant expansion of a plasma system. We emphasize the common
underlying AdS/CFT description both in the large proper time regime where
hydrodynamic dynamics dominates, and in the small proper time regime where the
dynamics is far from equilibrium. These AdS/CFT methods provide a fascinating
arena interrelating General Relativity phenomenae with strongly coupled gauge
theory physics.Comment: 35 pages, 3 figures. Lectures at the 5th Aegean summer school, `From
gravity to thermal gauge theories: the AdS/CFT correspondence'. To appear in
the proceedings in `Lecture Notes in Physics
Electrified plasma in AdS/CFT correspondence
We construct new gravity backgrounds holographic dual to neutral plasma with
U(1) global symmetry in the presence of constant electric field, considering
its full back-reactions to the metric. As the electric field and the induced
current cause a net energy in-flow to the system, the plasma is continually
heated up and the corresponding gravity solution has an expanding horizon.
After proposing a consistent late-time expansion scheme, we present analytic
solutions in the scheme up to next-leading order, and our solutions are new
time-dependent solutions of 5D asymptotic AdS Einstein-Maxwell(-Chern-Simons)
theory. To extract dual CFT stress tensor and U(1) current from the solutions,
we perform a rigorous holographic renormalization of
Einstein-Maxwell-Chern-Simons theory including full back-reactions, which can
in itself be an interesting addition to literatures. As by-products, we obtain
interesting modifications of energy-momentum/current Ward identities due to the
U(1) symmetry and its triangle anomaly.Comment: 27 pages, no figure, v3, minor typos fixed, matches with published
versio
- …
