310 research outputs found
On Synchronization in a Lattice Model of Pulse-Coupled Oscillators
We analyze the collective behavior of a lattice model of pulse-coupled
oscillators. By means of computer simulations we find the relation between the
intrinsic dynamics of each member of the population and their mutual
interaction that ensures, in a general context, the existence of a fully
synchronized regime. This condition turns out to be the same than the obtained
for the globally coupled population. When the condition is not completely
satisfied we find different spatial structures. This also gives some hints
about self-organized criticality.Comment: 4 pages, RevTex, 1 PostScript available upon request, To appear in
Phys. Rev. Let
Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research
This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry
Mimicking human skin constructs using norbornene-pullulan-based hydrogels
There has been a huge demand for engineered skin tissues in the realms of both in vitro and in vivo applications. Selecting the right material scaffold is a critical consideration in making engineered skin tissues, since it should possess a good balance between elasticity and mechanical stability while promoting an adequate cell microenvironment to support both the dermal and the epidermal compartments of skin tissue. In this study, 3D-bioprinted norbornene-pullulan photocrosslinkable hydrogels were utilized as alternative scaffolds to produce epithelized dermal skin models. By employing visible light, 2.5 mm3 cell-laden hydrogels could be printed in 10 s. The thiol-ene photocrosslinking chemistry employed in this work enabled the formation of a well-defined extracellular matrix with orthogonal crosslinks, where encapsulated fibroblasts maintained high cellular viability rates. Through this method, an epidermal layer could be grown on top of the fibroblasts. The coexistence and interaction of human fibroblasts and keratinocytes were visualized by determining the expression of specific markers. This approach represents a promising starting point for the development of photocrosslinkable hydrogel-based human skin constructs by using thiol-ene norbornene chemistry, paving the way toward manufacture of complex in vitro models of human tissues
A two-step mechanism for epigenetic specification of centromere identity and function
The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.National Institutes of Health grant: (GM 074150); Ludwig Institute for Cancer Research; European Molecular Biology Organization (EMBO) long-term fellowship
Deafening silence? Marxism, international historical sociology and the spectre of Eurocentrism
Approaching the centenary of its establishment as a formal discipline, International Relations today challenges the ahistorical and aspatial frameworks advanced by the theories of earlier luminaries. Yet, despite a burgeoning body of literature built on the transdisciplinary efforts bridging International Relations and its long-separated nomothetic relatives, the new and emerging conceptual frameworks have not been able to effectively overcome the challenge posed by the ‘non-West’. The recent wave of international historical sociology has highlighted possible trajectories to problematise the myopic and unipolar conceptions of the international system; however, the question of Eurocentrism still lingers in the developing research programmes. This article interjects into the ongoing historical materialist debate in international historical sociology by: (1) conceptually and empirically challenging the rigid boundaries of the extant approaches; and (2) critically assessing the postulations of recent theorising on ‘the international’, capitalist states-system/geopolitics and uneven and combined development. While the significance of the present contributions in international historical sociology should not be understated, it is argued that the ‘Eurocentric cage’ still occupies a dominant ontological position which essentially silences ‘connected histories’ and conceals the role of inter-societal relations in the making of the modern states-system and capitalist geopolitics
The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.Copyright © 2023. Published by Elsevier B.V
Exploring Food Addiction Across Several Behavioral Addictions: Analysis of Clinical Relevance
Background/Objectives: Recently, interest in studying food addiction (FA) in the context of behavioral addictions (BAs) has increased. However, research remains limited to determine the FA prevalence among various BAs. The current study aimed to investigate FA in a clinical sample of patients seeking treatment for gaming disorder, compulsive buying-shopping disorder (CBSD), compulsive sexual behavior disorder, and the comorbid presence of multiple BAs, as well as to determine the sociodemographic characteristics, personality traits, and general psychopathology of this clinical population. In addition, we analyzed whether FA is linked to a higher mean body mass index (BMI). Methods: The sample included 209 patients (135 men and 74 women) attending a specialized behavioral addiction unit. The assessment included a semi-structured clinical interview for the diagnosis of the abovementioned BAs, in addition to self-reported psychometric assessments for FA (using the Yale Food Addiction Scale 2. 0, YFAS-2), CBSD (using the Pathological Buying Screener, PBS), general psychopathology (using the Symptom Checklist-Revised, SCL-90-R), personality traits (using the Temperament and Character Inventory-Revised, TCI-R), emotional regulation (using Difficulties in Emotion Regulation Strategies, DERS), and impulsivity (using Impulsive Behavior Scale, UPPS-P). The comparison between the groups for the clinical profile was performed using logistic regression (categorical variables) and analysis of covariance (ANCOVA), adjusted based on the patients' gender. The sociodemographic profile was based on chi-square tests for categorical variables and analysis of variance (ANOVA) for quantitative measures. Results: The prevalence of FA in the total sample was 22.49%. The highest prevalence of FA was observed in CBSD (31.3%), followed by gaming disorder (24.7%), and the comorbid presence of multiple BAs (14.3%). No group differences (FA+/-) were found in relation to sociodemographic variables, but the comorbidity between FA and any BA was associated more with females as well as having greater general psychopathology, greater emotional dysregulation, higher levels of impulsivity, and a higher mean BMI. Conclusions: The comorbidity between FA and BA is high compared to previous studies (22.49%), and it is also associated with greater severity and dysfunctionality. Emotional distress levels were high, which suggests that the group with this comorbidity may be employing FA behaviors to cope with psychological distress. However, a better understanding of the latent mechanisms that contribute to the progression of this multifaceted comorbid clinical disorder is needed. One aspect that future studies could consider is to explore the existence of FA symptoms early and routinely in patients with BAs
Teaching a Robot the Semantics of Assembly Tasks
We present a three-level cognitive system in a learning by demonstration context. The system allows for learning and transfer on the sensorimotor level as well as the planning level. The fundamentally different data structures associated with these two levels are connected by an efficient mid-level representation based on so-called 'semantic event chains.' We describe details of the representations and quantify the effect of the associated learning procedures for each level under different amounts of noise. Moreover, we demonstrate the performance of the overall system by three demonstrations that have been performed at a project review. The described system has a technical readiness level (TRL) of 4, which in an ongoing follow-up project will be raised to TRL 6
Cellular Immunity to Predict the Risk of Cytomegalovirus Infection in Kidney Transplantation: A Prospective, Interventional, Multicenter Clinical Trial
Background: Improving cytomegalovirus (CMV) immune-risk stratification in kidney transplantation is highly needed to establish guided preventive strategies.
Methods: This prospective, interventional, multicenter clinical trial assessed the value of monitoring pretransplant CMV-specific cell-mediated immunity (CMI) using an interferon-γrelease assay to predict CMV infection in kidney transplantation. One hundred sixty donor/recipient CMV-seropositive (D+/R+) patients, stratified by their baseline CMV (immediate-early protein 1)-specific CMI risk, were randomized to receive either preemptive or 3-month antiviral prophylaxis. Also, 15-day posttransplant CMI risk stratification and CMI specific to the 65 kDa phosphoprotein (pp65) CMV antigen were investigated. Immunosuppression consisted of basiliximab, tacrolimus, mycophenolate mofetil, and corticosteroids in 80% of patients, whereas 20% received thymoglobulin induction therapy.
Results: Patients at high risk for CMV based on pretransplant CMI developed significantly higher CMV infection rates than those deemed to be at low risk with both preemptive (73.3% vs 44.4%; odds ratio [OR], 3.44 [95% confidence interval {CI}, 1.30-9.08]) and prophylaxis (33.3% vs 4.1%; OR, 11.75 [95% CI, 2.31-59.71]) approaches. The predictive capacity for CMV-specific CMI was only found in basiliximab-treated patients for both preemptive and prophylaxis therapy. Fifteen-day CMI risk stratification better predicted CMV infection (81.3% vs 9.1%; OR, 43.33 [95% CI, 7.89-237.96]).
Conclusions: Pretransplant CMV-specific CMI identifies D+/R+ kidney recipients at high risk of developing CMV infection if not receiving T-cell-depleting antibodies. Monitoring CMV-specific CMI soon after transplantation further defines the CMV infection prediction risk. Monitoring CMV-specific CMI may guide decision making regarding the type of CMV preventive strategy in kidney transplantation. Clinical Trials Registration: NCT02550639
- …
