21 research outputs found

    Energy Gap from Tunneling and Metallic Sharvin Contacts onto MgB2: Evidence for a Weakened Surface Layer

    Full text link
    Point-contact tunnel junctions using a Au tip on sintered MgB2 pellets reveal a sharp superconducting energy gap that is confirmed by subsequent metallic Sharvin contacts made on the same sample. The peak in the tunneling conductance and the Sharvin contact conductance follow the BCS form, but the gap values of 4.3 meV are less than the weak-coupling BCS value of 5.9 meV for the bulk Tc of 39 K. The low value of Delta compared to the BCS value for the bulk Tc is possibly due to chemical reactions at the surface.Comment: 3 pages, 3 figure

    The optical response of Ba_{1-x}K_xBiO_3: Evidence for an unusual coupling mechanism of superconductivity?

    Full text link
    We have analysed optical reflectivity data for Ba_{1-x}K_xBiO_3 in the far-infrared region using Migdal-Eliashberg theory and found it inconsistent with standard electron-phonon coupling: Whereas the superconducting state data could be explained using moderate coupling, \lambda=0.7, the normal state properties indicate \lambda \le 0.2. We have found that such behaviour could be understood using a simple model consisting of weak standard electron-phonon coupling plus weak coupling to an unspecified high energy excitation near 0.4 eV. This model is found to be in general agreement with the reflectivity data, except for the predicted superconducting gap size. The additional high energy excitation suggests that the dominant coupling mechanism in Ba_{1-x}K_xBiO_3 is not standard electron-phonon.Comment: 5 pages REVTex, 5 figures, 32 refs, accepted for publication in Phys. Rev.

    Defect Detection in Wire Manufacturing

    No full text
    In the sequential drawing of metallic wires from an initial diameter of 196 mils (4.9 mm) to a final diameter just under 1 mil (25 μm), the wires sometimes break. Subsequent examination via TEM of broken Al wires [1] revealed that breaks occurred most often due to inclusions of Si almost as large as the wire diameter. The challenge is to devise a technique that can detect inclusions well before the wire is drawn to about the diameter of the inclusions. For example, if there is a larger diameter wire that has commercial use, and some inclusions are detected at that diameter, then the drawing-down process could be stopped at that point, and only the wires without inclusions will be drawn to smaller diameters. A different problem occurs in the manufacture of composite superconducting wires, most typically multifilament NbTi in a Cu matrix. Here the sausaging of NbTi filaments causes a reduced critical current. For this case the challenge is to devise a ]nondestructive method at room temperature for determining the integrity and quality of the NbTi filaments during or immediately after the fabrication process.</p

    Management of velopharyngeal incompetence in cleft palate

    Get PDF
    In the sequential drawing of metallic wires from an initial diameter of 196 mils (4.9 mm) to a final diameter just under 1 mil (25 μm), the wires sometimes break. Subsequent examination via TEM of broken Al wires [1] revealed that breaks occurred most often due to inclusions of Si almost as large as the wire diameter. The challenge is to devise a technique that can detect inclusions well before the wire is drawn to about the diameter of the inclusions. For example, if there is a larger diameter wire that has commercial use, and some inclusions are detected at that diameter, then the drawing-down process could be stopped at that point, and only the wires without inclusions will be drawn to smaller diameters. A different problem occurs in the manufacture of composite superconducting wires, most typically multifilament NbTi in a Cu matrix. Here the sausaging of NbTi filaments causes a reduced critical current. For this case the challenge is to devise a ]nondestructive method at room temperature for determining the integrity and quality of the NbTi filaments during or immediately after the fabrication process

    Tunneling,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">α</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><i>F</i>(ω), and transport in superconductors: Nb, V, VN,<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ba</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mi mathvariant="normal">−</mml:mi><mml:mi mathvariant="italic">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">K</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="italic">x</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">BiO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>, and<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Nd</mml:mi></mml:mrow><mml:mrow><mml:mn>1.85</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Ce</mml:mi></mml:mrow><mml:mrow><mml:mn>0.15</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">CuO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

    Full text link
    corecore