1,388 research outputs found
Supported magnetic nanoclusters: Softlanding of Pd clusters on a MgO surface
Low-energy deposition of neutral Pd_N clusters (N=2-7 and 13) on a MgO(001)
surface F-center (FC) was studied by spin-density-functional molecular dynamics
simulations. The incident clusters are steered by an attractive "funnel"
created by the FC, resulting in adsorption of the cluster, with one of its
atoms bonded atop of the FC. The deposited Pd_2-Pd_6 clusters retain their
gas-phase structures, while for N>6 surface-commensurate isomers are
energetically more favorable. Adsorbed clusters with N > 3 are found to remain
magnetic at the surface.Comment: 5 pages, 2 figs, Phys.Rev.Lett., accepte
Structural models for the Si(553)-Au atomic chain reconstruction
Recent photoemission experiments on the Si(553)-Au reconstruction show a
one-dimensional band with a peculiar ~1/4 filling. This band could provide an
opportunity for observing large spin-charge separation if electron-electron
interactions could be increased. To this end, it is necessary to understand in
detail the origin of this surface band. A first step is the determination of
the structure of the reconstruction. We present here a study of several
structural models using first-principles density functional calculations. Our
models are based on a plausible analogy with the similar and better known
Si(557)-Au surface, and compared against the sole structure proposed to date
for the Si(553)-Au system [Crain JN et al., 2004 Phys. Rev. B 69 125401 ].
Results for the energetics and the band structures are given. Lines for the
future investigation are also sketched
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Variational finite-difference representation of the kinetic energy operator
A potential disadvantage of real-space-grid electronic structure methods is
the lack of a variational principle and the concomitant increase of total
energy with grid refinement. We show that the origin of this feature is the
systematic underestimation of the kinetic energy by the finite difference
representation of the Laplacian operator. We present an alternative
representation that provides a rigorous upper bound estimate of the true
kinetic energy and we illustrate its properties with a harmonic oscillator
potential. For a more realistic application, we study the convergence of the
total energy of bulk silicon using a real-space-grid density-functional code
and employing both the conventional and the alternative representations of the
kinetic energy operator.Comment: 3 pages, 3 figures, 1 table. To appear in Phys. Rev. B. Contribution
for the 10th anniversary of the eprint serve
Electrons in Dry DNA from Density Functional Calculations
The electronic structure of an infinite poly-guanine - poly-cytosine DNA
molecule in its dry A-helix structure is studied by means of density-functional
calculations. An extensive study of 30 nucleic base pairs is performed to
validate the method. The electronic energy bands of DNA close to the Fermi
level are then analyzed in order to clarify the electron transport properties
in this particularly simple DNA realization, probably the best suited candidate
for conduction. The energy scale found for the relevant band widths, as
compared with the energy fluctuations of vibrational or genetic-sequence
origin, makes highly implausible the coherent transport of electrons in this
system. The possibility of diffusive transport with sub-nanometer mean free
paths is, however, still open. Information for model Hamiltonians for
conduction is provided.Comment: 8 pages, 4 figure
Nanotube Piezoelectricity
We combine ab initio, tight-binding methods and analytical theory to study
piezoelectric effect of boron nitride nanotubes. We find that piezoelectricity
of a heteropolar nanotube depends on its chirality and diameter and can be
understood starting from the piezoelectric response of an isolated planar
sheet, along with a structure specific mapping from the sheet onto the tube
surface. We demonstrate that coupling between the uniaxial and shear
deformation are only allowed in the nanotubes with lower chiral symmetry. Our
study shows that piezoelectricity of nanotubes is fundamentally different from
its counterpart in three dimensional (3D) bulk materials.Comment: 4 pages, with 3 postscript figures embedded. Uses REVTEX4 macros.
Also available at
http://www.physics.upenn.edu/~nsai/preprints/bn_piezo/index.htm
Diffusion of Pt dimers on Pt(111)
We report the results of a density-functional study of the diffusion of Pt
dimers on the (111) surface of Pt. The calculated activation energy of 0.37 eV
is in {\em exact} agreement with the recent experiment of Kyuno {\em et al.}
\protect{[}Surf. Sci. {\bf 397}, 191 (1998)\protect{]}. Our calculations
establish that the dimers are mobile at temperatures of interest for adatom
diffusion, and thus contribute to mass transport. They also indicate that the
diffusion path for dimers consists of a sequence of one-atom and (concerted)
two-atom jumps.Comment: Pour pages postscript formatted, including one figure; submitted to
Physical Review B; other papers of interest can be found at url
http://www.centrcn.umontreal.ca/~lewi
An efficient k.p method for calculation of total energy and electronic density of states
An efficient method for calculating the electronic structure in large systems
with a fully converged BZ sampling is presented. The method is based on a
k.p-like approximation developed in the framework of the density functional
perturbation theory. The reliability and efficiency of the method are
demostrated in test calculations on Ar and Si supercells
Order parameter model for unstable multilane traffic flow
We discuss a phenomenological approach to the description of unstable vehicle
motion on multilane highways that explains in a simple way the observed
sequence of the phase transitions "free flow -> synchronized motion -> jam" as
well as the hysteresis in the transition "free flow synchronized motion".
We introduce a new variable called order parameter that accounts for possible
correlations in the vehicle motion at different lanes. So, it is principally
due to the "many-body" effects in the car interaction, which enables us to
regard it as an additional independent state variable of traffic flow. Basing
on the latest experimental data (cond-mat/9905216) we assume that these
correlations are due to a small group of "fast" drivers. Taking into account
the general properties of the driver behavior we write the governing equation
for the order parameter. In this context we analyze the instability of
homogeneous traffic flow manifesting itself in both of the mentioned above
phase transitions where, in addition, the transition "synchronized motion ->
jam" also exhibits a similar hysteresis. Besides, the jam is characterized by
the vehicle flows at different lanes being independent of one another. We
specify a certain simplified model in order to study the general features of
the car cluster self-formation under the phase transition "free flow
synchronized motion". In particular, we show that the main local parameters of
the developed cluster are determined by the state characteristics of vehicle
motion only.Comment: REVTeX 3.1, 10 pages with 10 PostScript figure
A mixed ultrasoft/normconserved pseudopotential scheme
A variant of the Vanderbilt ultrasoft pseudopotential scheme, where the
normconservation is released for only one or a few angular channels, is
presented. Within this scheme some difficulties of the truly ultrasoft
pseudopotentials are overcome without sacrificing the pseudopotential softness.
i) Ghost states are easily avoided without including semicore shells. ii) The
ultrasoft pseudo-charge-augmentation functions can be made more soft. iii) The
number of nonlocal operators is reduced. The scheme will be most useful for
transition metals, and the feasibility and accuracy of the scheme is
demonstrated for the 4d transition metal rhodium.Comment: 4 pages, 2 figure
- …
