2,480 research outputs found
Local solutions in Sobolev spaces with negative indices for the "good" Boussinesq equation
We study the local well-posedness of the initial-value problem for the
nonlinear "good" Boussinesq equation with data in Sobolev spaces \textit{}
for negative indices of .Comment: Referee comments incorporate
Edge Current due to Majorana Fermions in Superfluid He A- and B-Phases
We propose a method utilizing edge current to observe Majorana fermions in
the surface Andreev bound state for the superfluid He A- and B-phases. The
proposal is based on self-consistent analytic solutions of quasi-classical
Green's function with an edge. The local density of states and edge mass
current in the A-phase or edge spin current in the B-phase can be obtained from
these solutions. The edge current carried by the Majorana fermions is partially
cancelled by quasiparticles (QPs) in the continuum state outside the superfluid
gap. QPs contributing to the edge current in the continuum state are
distributed in energy even away from the superfluid gap. The effect of Majorana
fermions emerges in the depletion of the edge current by temperature within a
low-temperature range. The observations that the reduction in the mass current
is changed by -power in the A-phase and the reduction in the spin current
is changed by -power in the B-phase establish the existence of Majorana
fermions. We also point out another possibility for observing Majorana fermions
by controlling surface roughness.Comment: 13 pages, 4 figures, published versio
Detection of antiferromagnetic ordering in heavily doped LaFeAsO1-xHx pnictide superconductors using nuclear-magnetic-resonance techniques
We studied double superconducting (SC) domes in LaFeAsO1-xHx by using 75As-
and 1H-nuclear magnetic resonance techniques, and unexpectedly discovered that
a new antiferromagnetic (AF) phase follows the double SC domes on further H
doping, forming a symmetric alignment of AF and SC phases in the electronic
phase diagram. We demonstrated that the new AF ordering originates from the
nesting between electron pockets, unlike the nesting between electron and hole
pockets as seen in the majority of undoped pnictides. The new AF ordering is
derived from the features common to high-Tc pnictides: however, it has not been
reported so far for other high-Tc pnictides because of their poor electron
doping capability.Comment: 5 figures, in press in PR
Functions of sensor 1 and sensor 2 regions of Saccharomyces cerevisiae Cdc6p in vivo and in vitro
Cdc6p is a key regulator of the cell cycle in eukaryotes and is a member of the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins. In this family of proteins, the sensor 1 and sensor 2 regions are important for their function and ATPase activity. Here, site-directed mutagenesis has been used to examine the role of these regions of Saccharomyces cerevisiae Cdc6p in controlling the cell cycle progression and initiation of DNA replication. Two important amino acid residues (Asn(263) in sensor 1 and Arg(332) in sensor 2) were identified as key residues for Cdc6p function in vivo. Cells expressing mutant Cdc6p (N263A or R332E) grew slowly and accumulated in the S phase. In cells expressing mutant Cdc6p, loading of the minichromosome maintenance (MCM) complex of proteins was decreased, suggesting that the slow progression of S phase in these cells was due to inefficient MCM loading on chromatin. Purified wild type Cdc6p but not mutant Cdc6p (N263A and R332E) caused the structural modification of origin recognition complex proteins. These results are consistent with the idea that Cdc6p uses its ATPase activity to change the conformation of origin recognition complex, and then together they recruit the MCM complex
Linear vs. nonlinear effects for nonlinear Schrodinger equations with potential
We review some recent results on nonlinear Schrodinger equations with
potential, with emphasis on the case where the potential is a second order
polynomial, for which the interaction between the linear dynamics caused by the
potential, and the nonlinear effects, can be described quite precisely. This
includes semi-classical regimes, as well as finite time blow-up and scattering
issues. We present the tools used for these problems, as well as their
limitations, and outline the arguments of the proofs.Comment: 20 pages; survey of previous result
The Sunyaev-Zel'dovich Effect at Five Arc-seconds: RXJ1347.5-1145 Imaged by ALMA
We present the first image of the thermal Sunyaev-Zel'dovich effect (SZE)
obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). Combining
7-m and 12-m arrays in Band 3, we create an SZE map toward a galaxy cluster
RXJ1347.5-1145 with 5 arc-second resolution (corresponding to the physical size
of 20 kpc/h), the highest angular and physical spatial resolutions achieved to
date for imaging the SZE, while retaining extended signals out to 40
arc-seconds. The 1-sigma statistical sensitivity of the image is 0.017 mJy/beam
or 0.12 mK_CMB at the 5 arc-second full width at half maximum. The SZE image
shows a good agreement with an electron pressure map reconstructed
independently from the X-ray data and offers a new probe of the small-scale
structure of the intracluster medium. Our results demonstrate that ALMA is a
powerful instrument for imaging the SZE in compact galaxy clusters with
unprecedented angular resolution and sensitivity. As the first report on the
detection of the SZE by ALMA, we present detailed analysis procedures including
corrections for the missing flux, to provide guiding methods for analyzing and
interpreting future SZE images by ALMA.Comment: 20 pages, 13 figures. Accepted for publication in PAS
Arctic and Antarctic polar mesosphere summer echoes observed with oblique incidence HF radars: analysis using simultaneous MF and VHF radar data
Polar mesosphere summer echoes (PMSEs) have been well studied using vertical incidence VHF radars at northern high-latitudes. In this paper, two PMSE events detected with the oblique incidence SuperDARN HF radars at Hankasalmi, Finland (62.3° N) and Syowa Station, Antarctica (69.0° S), are analyzed, together with simultaneous VHF and medium-frequency (MF) radar data. Altitude resolutions of the HF radars in the mesosphere and the lower thermosphere are too poor to know exact PMSE altitudes. However, a comparison of Doppler velocity from the HF radar and neutral wind velocity from the MF radar shows that PMSEs at the HF band appeared at altitudes within 80-90km, which are consistent with those from previous vertical incidence HF-VHF radar results. The HF-VHF PMSE occurrences exhibit a semidiurnal behavior, as observed by other researchers. It is found that in one event, PMSEs occurred when westward semidiurnal winds with large amplitude at 85-88km altitudes attained a maximum. When the HF-VHF PMSEs were observed at distances beyond 180km from MF radar sites, the MF radars detected no appreciable signatures of echo enhancement. <br><br><b>Key words.</b> Meteorology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; waves and tides
Singular Vortex in Narrow Cylinders of Superfluid 3He-A Phase
Motivated by the on-going rotating cryostat experiments in ISSP, Univ. of
Tokyo, we explore the textures and vortices in superfluid 3He-A phase confined
in narrow cylinders, whose radii are R=50mum and 115mum. The calculations are
based on the Ginzburg-Landau (GL) framework, which fully takes into account the
orbital (l-vector) and spin (d-vector) degrees of freedom for chiral p-wave
pairing superfluid. The GL free energy functional is solved numerically by
using best known GL parameters appropriate for the actual experimental
situations at P=3.2MPa and H=21.6mT. We identify the ground state l-vector
configuration as radial disgyration (RD) texture with the polar core both at
rest and low rotations and associated d-vector textures for both narrow
cylinder systems under high magnetic fields. The RD which has a singularity at
center, changes into Mermin-Ho texture above the critical rotation speed which
is determined precisely, providing an experimental check for own proposal.Comment: 22 pages, 12 figure
Flat bands in topological media
Topological media are systems whose properties are protected by topology and
thus are robust to deformations of the system. In topological insulators and
superconductors the bulk-surface and bulk-vortex correspondence gives rise to
the gapless Weyl, Dirac or Majorana fermions on the surface of the system and
inside vortex cores. Here we show that in gapless topological media, the
bulk-surface and bulk-vortex correspondence is more effective: it produces
topologically protected gapless fermions without dispersion -- the flat band.
Fermion zero modes forming the flat band are localized on the surface of
topological media with protected nodal lines and in the vortex core in systems
with topologically protected Fermi points (Weyl points). Flat band has an
extremely singular density of states, and we show that this property may give
rise in particular to surface superconductivity which could exist even at room
temperature.Comment: 9 pages, 5 figures, version to appear in JETP Letter
- …
