26 research outputs found

    Glucose Recovery from Different Corn Stover Fractions Using Dilute Acid and Alkaline Pretreatment Techniques

    Get PDF
    Background: Limited availability of corn stover due to the competing uses (organic manure, animal feed, bio-materials, and bioenergy) presents a major concern for its future in the bio-economy. Furthermore, biomass research has exhibited different results due to the differences in the supply of enzymes and dissimilar analytical methods. The effect of the two leading pretreatment techniques (dilute acid and alkaline) on glucose yield from three corn stover fractions (cob, stalk, and leaf) sourced from a single harvest in Uganda were studied at temperatures 100, 120, 140, and 160 °C over reaction times of 5, 10, 30, and 60 min. Results: From this study, the highest glucose concentrations obtained from the dilute acid (DA) pretreated cobs, stalks, and leaves were 18.4 g/L (66.8% glucose yield), 16.2 g/L (64.1% glucose yield), and 11.0 g/L (49.5% glucose yield), respectively. The optimal pretreatment settings needed to obtain these yields from the DA pretreated samples were at a temperature of 160 °C over an incubation time of 30 min. The highest glucose concentrations obtained from the alkaline (AL) pretreated cobs, stalks, and leaves were 24.7 g/L (81.73% glucose yield), 21.3 g/L (81.23% glucose yield), and 15.0 g/L (51.92% glucose yield), respectively. To be able to achieve these yields, the optimal pretreatment settings for the cobs and stalks were 140 °C and for a retention time of 30 min, while the leaves require optimal conditions of 140 °C and for a retention time of 60 min. Conclusions: The study recommends that the leaves could be left on the field during harvesting since the recovery of glucose from the pretreated cobs and stalks is higher

    Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

    No full text
    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60–70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production

    Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

    No full text
    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60–70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production

    Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

    No full text
    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60–70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production

    Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

    No full text
    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60–70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production

    Restructuring the Crystalline Cellulose Hydrogen Bond Network Enhances Its Depolymerization Rate

    No full text
    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through molecular dynamics (MD) simulations and enzymatic assays. Ammonia transformed the naturally occurring crystalline allomorph Iβ to IIII, which led to a decrease in the number of cellulose intrasheet hydrogen bonds and an increase in the number of intersheet hydrogen bonds. This rearrangement of the hydrogen bond network within cellulose IIII, which increased the number of solvent-exposed glucan chain hydrogen bonds with water by ∼50%, was accompanied by enhanced saccharification rates by up to 5-fold (closest to amorphous cellulose) and 60–70% lower maximum surface-bound cellulase capacity. The enhancement in apparent cellulase activity was attributed to the “amorphous-like” nature of the cellulose IIII fibril surface that facilitated easier glucan chain extraction. Unrestricted substrate accessibility to active-site clefts of certain endocellulase families further accelerated deconstruction of cellulose IIII. Structural and dynamical features of cellulose IIII, revealed by MD simulations, gave additional insights into the role of cellulose crystal structure on fibril surface hydration that influences interfacial enzyme binding. Subtle alterations within the cellulose hydrogen bond network provide an attractive way to enhance its deconstruction and offer unique insight into the nature of cellulose recalcitrance. This approach can lead to unconventional pathways for development of novel pretreatments and engineered cellulases for cost-effective biofuels production
    corecore