182 research outputs found

    Ab initio calculation of H + He+^+ charge transfer cross sections for plasma physics

    Full text link
    The charge transfer in low energy (0.25 to 150 eV/amu) H(nlnl) + He+(1s)^+(1s) collisions is investigated using a quasi-molecular approach for the n=2,3n=2,3 as well as the first two n=4n=4 singlet states. The diabatic potential energy curves of the HeH+^+ molecular ion are obtained from the adiabatic potential energy curves and the non-adiabatic radial coupling matrix elements using a two-by-two diabatization method, and a time-dependent wave-packet approach is used to calculate the state-to-state cross sections. We find a strong dependence of the charge transfer cross section in the principal and orbital quantum numbers nn and ll of the initial or final state. We estimate the effect of the non-adiabatic rotational couplings, which is found to be important even at energies below 1 eV/amu. However, the effect is small on the total cross sections at energies below 10 eV/amu. We observe that to calculate charge transfer cross sections in a nn manifold, it is only necessary to include states with nnn^{\prime}\leq n, and we discuss the limitations of our approach as the number of states increases.Comment: 14 pages, 10 figure

    Charge Exchange in Low-Energy H, D + C4+ Collisions with Full Account of Electron Translation

    Get PDF
    We report the application of the quantum approach, which takes full account of electron translation at low collisional energies, to the charge exchange process H, D + C4+ → H+, D+ + C3+(3s; 3p; 3d). The partial and the total integral cross sections of the process are calculated in the energy range from 1 till 60 eV/amu. It is shown that the present results are independent from the upper integration limit for numerical solution of the coupled channel equations although nonadiabatic couplings remain nonzero up to infinity. The calculated partial and total cross sections are in agreement with the previous low-energy calculations and the available experimental data. It is shown that for low collisional energies the isotopic effect takes place. The observed effect is explained in terms of the nonadiabatic dynamics.National Science FoundationVolkswagenstiftungFonds National de la Recherche Scientifique de Belgiqu

    Evidence for two-electron processes in the mutual neutralization of O- with O+ and N+ at Subthermal Collision Energies

    Full text link
    We have measured total absolute cross sections for the Mutual Neutralization (MN) of O- with O+/N+. A fine resolution (of about 50 meV) in the kinetic energy spectra of the product neutral atoms allows unique identification of the atomic states participating in the mutual neutralization process. Cross sections and branching ratios have also been calculated down to 1 meV center-of-mass collision energy for these two systems with a multi-channel Landau-Zener model and an asymptotic method for the ionic-covalent coupling matrix elements. The importance of two-electron processes in one-electron transfer is demonstrated by the dominant contribution of a core-excited configuration of the nitrogen atom in N+ + O- collisions. This effect is partially accounted for by introducing configuration mixing in the evaluation of coupling matrix elements.Comment: 5 pages, 4 figure

    Ab initio calculation of the 66 low lying electronic states of HeH+^+: adiabatic and diabatic representations

    Full text link
    We present an ab initio study of the HeH+^+ molecule. Using the quantum chemistry package MOLPRO and a large adapted basis set, we have calculated the adiabatic potential energy curves of the first 20 1Σ+^1 \Sigma^+, 19 3Σ+^3\Sigma^+, 12 1Π^1\Pi, 9 3Π^3\Pi, 4 1Δ^1\Delta and 2 3Δ^3\Delta electronic states of the ion in CASSCF and CI approaches. The results are compared with previous works. The radial and rotational non-adiabatic coupling matrix elements as well as the dipole moments are also calculated. The asymptotic behaviour of the potential energy curves and of the various couplings between the states is also studied. Using the radial couplings, the diabatic representation is defined and we present an example of our diabatization procedure on the 1Σ+^1\Sigma^+ states.Comment: v2. Minor text changes. 28 pages, 18 figures. accepted in J. Phys.

    Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr

    Get PDF
    Configuration interaction (CI) calculations in atoms with two valence electrons, carried out in the V(N-2) Hartree-Fock potential of the core, are corrected for core-valence interactions using many-body perturbation theory (MBPT). Two variants of the mixed CI+MBPT theory are described and applied to obtain energy levels and transition amplitudes for Be, Mg, Ca, and Sr

    Non-destructive imaging of buried electronic interfaces using a decelerated scanning electron beam

    Get PDF
    Recent progress in nanotechnology enables the production of atomically abrupt interfaces in multilayered junctions, allowing to increase the number of transistors in a processor, as known as Moore’s law, for example. However, uniform electron transport has never been achieved across the entire interfacial area in junctions due to the existence of local defects, causing local heating and reduction in transport efficiency. To date, junction uniformity has been predominantly assessed by cross-sectional transmission electron microscopy, which requires slicing and milling processes with potentially introducing additional damage and deformation. It is therefore essential to develop an alternative non-destructive method. Here we show a non-destructive technique using scanning electron microscopy to map buried junction properties. By controlling the electron-beam energy, we demonstrate the contrast imaging of local junction resistances at a controlled depth. This technique can be applied to any buried junctions, from conventional semiconductor and metal devices to organic devices

    Cold collisions of C2_{2}^{-} anions with Li and Rb atoms in hybrid traps

    Full text link
    We present a theoretical investigation of reactive and non-reactive collisions of Li and Rb atoms with C2_{2}^{-} molecular anions at low temperatures in the context of sympathetic cooling in hybrid trap experiments. Based on recently reported accurate potential energy surfaces for the singlet and triplet states of the Li-C2_{2}^{-} and Rb-C2_{2}^{-} systems, we show that the associative electronic detachment reaction is slow if the colliding partners are in their ground state, but fast if they are excited. The results are expected to be representative of the alkali-metal series. We also investigate rotationally inelastic collisions in order to explore the cooling of the translational and rotational degrees of freedom of C2_2^- in hybrid ion-atom traps. The effect of micromotion is taken into account by considering Tsallis distributions of collision energies. We show that the translational cooling occurs much more rapidly than rotational cooling and that the presence of excited atoms leads to losses of anions on a timescale comparable to that of rotational cooling.Comment: ICPEAC 2019 conferenc
    corecore