149 research outputs found
Gi- and Gs-coupled GPCRs show different modes of G-protein binding.
More than two decades ago, the activation mechanism for the membrane-bound photoreceptor and prototypical G protein-coupled receptor (GPCR) rhodopsin was uncovered. Upon light-induced changes in ligand-receptor interaction, movement of specific transmembrane helices within the receptor opens a crevice at the cytoplasmic surface, allowing for coupling of heterotrimeric guanine nucleotide-binding proteins (G proteins). The general features of this activation mechanism are conserved across the GPCR superfamily. Nevertheless, GPCRs have selectivity for distinct G-protein family members, but the mechanism of selectivity remains elusive. Structures of GPCRs in complex with the stimulatory G protein, Gs, and an accessory nanobody to stabilize the complex have been reported, providing information on the intermolecular interactions. However, to reveal the structural selectivity filters, it will be necessary to determine GPCR-G protein structures involving other G-protein subtypes. In addition, it is important to obtain structures in the absence of a nanobody that may influence the structure. Here, we present a model for a rhodopsin-G protein complex derived from intermolecular distance constraints between the activated receptor and the inhibitory G protein, Gi, using electron paramagnetic resonance spectroscopy and spin-labeling methodologies. Molecular dynamics simulations demonstrated the overall stability of the modeled complex. In the rhodopsin-Gi complex, Gi engages rhodopsin in a manner distinct from previous GPCR-Gs structures, providing insight into specificity determinants
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
Planck 2015 results: XV. gravitational lensing
We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40 sigma), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator we detect lensing at a significance of 5 sigma. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40<L<400 and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the best-fitting LCDM model based on the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ 8 Ω 0.25 m =0.591±0.021 . We combine our determination of the lensing potential with the E-mode polarization also measured by Planck to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10 sigma, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3 sigma level, as expected due to dark energy in the concordance LCDM model
Intraosseous infusion of the distal phalanx compared to systemic intravenous infusion for marimastat delivery to equine lamellar tissue
No validated laminitis drug therapy exists, yet pharmaceutical agents with potential for laminitis prevention have been identified. Many of these are impractical for systemic administration but may be effective if administered locally. This study compared intraosseous infusion of the distal phalanx (IOIDP) with systemic intravenous constant rate infusion (CRI) to determine which was more effective for lamellar marimastat delivery. Ultrafiltration probes were placed in both forefeet of five horses to collect lamellar interstitial fluid as lamellar ultrafiltrate (LUF). Marimastat solution (3.5 mg/mL) containing lidocaine (20 mg/mL) was infused by IOIDP at 0.15 mL/min for 12 h. After a 12 h wash-out, marimastat (3.5 mg/mL) and lidocaine were infused by constant rate infusion (CRI) at 0.15 mL/min for 12 h. LUF, plasma and lamellar tissue marimastat concentrations were quantified using UPLC-MS. Zymography was used to establish the inhibitory concentrations of marimastat for equine lamellar matrix metalloproteinases (MMPs). Data were analysed non-parametrically. There was no difference between the steady-state marimastat concentration in lamellar ultrafiltrate (LUF[M]) during IOIDP (139[88-497] ng/mL) and CRI (136[93-157] ng/mL). During IOIDP, there was no difference between marimastat concentrations in the treated foot (139[88-497] ng/mL), the untreated foot (91[63-154] ng/mL) and plasma (101[93-118] ng/mL). LUF[M] after IOIDP and CRI were >IC50 of lamellar MMP-2 and 9, but below the concentration considered necessary for in vivo laminitis prevention. Lamellar drug delivery during IOIDP was inconsistent and did not achieve higher lamellar marimastat concentrations than CRI. Modification or refinement of the IOIDP technique is necessary if it is to be consistently effective
Beyond the 'Grid-Lock' in Electricity Interconnectors: The Case of Germany and Poland
The common European electricity market requires both market integration and transmission grid expansion, including trans-border interconnectors. Although the benefits of increased interconnectivity are widely acknowledged, expansion of interconnectors is often very slow. This paper gathers insights on the reasons behind this grid-lock drawing on the study of the German-Polish border. Although two interconnectors already exist, the trade is blocked by unplanned electricity loop flows. A third interconnector has been discussed for years, but saw little progress in spite of declarations of support on both sides. Drawing on the existing literature on the topic of grid expansion we identify four hypotheses for the grid-lock: inadequate financing; diverging interests; governance and administration problems; and different actors' motivations, trust and security perceptions. We evaluate them using the empirical material gathered through document analysis and stakeholder interviews conducted in Germany and Poland. None of the hypotheses on its own can explain the gridlock. However, while financing has not been a major obstacle, divergent interests had an impact on the project delay, administrative and governance problems are a great hindrance on the technical level, while motivations influence interstate political relations and policy shaping. EU support and closer bilateral cooperation provide opportunities to address these challenges
Rationale and design of the oral HEMe iron polypeptide Against Treatment with Oral Controlled Release Iron Tablets trial for the correction of anaemia in peritoneal dialysis patients (HEMATOCRIT trial)
Background: The main hypothesis of this study is that oral heme iron polypeptide (HIP; Proferrin (R) ES) administration will more effectively augment iron stores in erythropoietic stimulatory agent (ESA)-treated peritoneal dialysis (PD) patients than conventional oral iron supplementation (Ferrogradumet (R))
Cardiac and vascular structure and function parameters do not improve with alternate nightly home hemodialysis: An interventional cohort study
Background: Nightly extended hours hemodialysis may improve left ventricular hypertrophy and function and endothelial function but presents problems of sustainability and increased cost. The effect of alternate nightly home hemodialysis (NHD) on cardiovascular structure and function is not known
Endotoxin-induced changes in expression of cyclooxygenase isoforms in the lamellar tissue of extracorporeally haemoperfused equine limbs
Angiogenesis and sepsis-related equine laminitis have several features in common. Both events can be induced by endotoxin (lipopolysaccharide- LPS) and both are associated with increased expression of the enzyme cyclooxygenase (COX), of which two isoforms (COX-1 and COX-2) exist. To examine the causal relationship between LPS exposure and COX expression and to investigate the tissue distribution of COX in the LPS-exposed tissue, the technique of extracorporeal haemoperfusion of isolated equine forelimbs was utilized. Perfusion was performed for 10 hr under physiological conditions (control-perfused limbs, n = 5) and with addition of 80 ng/L of endotoxin (LPS-perfused limbs; n = 5). After perfusion, samples of lamellar tissue were collected from the dorsal aspect of the hoof wall. Additional control samples were collected from three non-perfused limbs. Immunohistochemical analysis was performed using antibodies against COX-1 and COX-2, and intensity of immunohistochemical staining was scored for each isoform. In the lamellar tissue of control- and LPS-perfused limbs, there was no significant difference in COX-1 staining intensity and distribution, whereas COX-2 expression was significantly increased in LPS-perfused limbs (especially in endothelial cells, fibroblasts and intravasal leucocytes as well as in epidermal basal cells at the base of the primary epidermal lamellae). These results suggest that COX-2 and its metabolites are involved in the initiation of pathological changes seen in sepsis-associated events such as sepsis-related laminitis. In such cases, COX-2 could therefore be an important therapeutic target; however, early therapy may be required as increase in COX-2 expression occurs within 10 hr after LPS exposure.</p
Exploring the correlation between the sequence composition of the nucleotide binding G5 loop of the FeoB GTPase domain (NFeoB) and intrinsic rate of GDP release
Chemogenomic Analysis of G-Protein Coupled Receptors and Their Ligands Deciphers Locks and Keys Governing Diverse Aspects of Signalling
Understanding the molecular mechanism of signalling in the important super-family of G-protein-coupled receptors (GPCRs) is causally related to questions of how and where these receptors can be activated or inhibited. In this context, it is of great interest to unravel the common molecular features of GPCRs as well as those related to an active or inactive state or to subtype specific G-protein coupling. In our underlying chemogenomics study, we analyse for the first time the statistical link between the properties of G-protein-coupled receptors and GPCR ligands. The technique of mutual information (MI) is able to reveal statistical inter-dependence between variations in amino acid residues on the one hand and variations in ligand molecular descriptors on the other. Although this MI analysis uses novel information that differs from the results of known site-directed mutagenesis studies or published GPCR crystal structures, the method is capable of identifying the well-known common ligand binding region of GPCRs between the upper part of the seven transmembrane helices and the second extracellular loop. The analysis shows amino acid positions that are sensitive to either stimulating (agonistic) or inhibitory (antagonistic) ligand effects or both. It appears that amino acid positions for antagonistic and agonistic effects are both concentrated around the extracellular region, but selective agonistic effects are cumulated between transmembrane helices (TMHs) 2, 3, and ECL2, while selective residues for antagonistic effects are located at the top of helices 5 and 6. Above all, the MI analysis provides detailed indications about amino acids located in the transmembrane region of these receptors that determine G-protein signalling pathway preferences
- …
