33 research outputs found
Polymer masked-unmasked protein therapy: Identification of the active species after amylase-activation of dextrin-colistin conjugates.
Polymer masked–unmasked protein therapy (PUMPT) uses conjugation of a biodegradable polymer, such as dextrin, hyaluronic acid, or poly(l-glutamic acid), to mask a protein or peptide’s activity; subsequent locally triggered degradation of the polymer at the target site regenerates bioactivity in a controllable fashion. Although the concept of PUMPT is well established, the relationship between protein unmasking and reinstatement of bioactivity is unclear. Here, we used dextrin–colistin conjugates to study the relationship between the molecular structure (degree of unmasking) and biological activity. Size exclusion chromatography was employed to collect fractions of differentially degraded conjugates and ultraperformance liquid chromatography–mass spectrometry (UPLC–MS) employed to characterize the corresponding structures. Antimicrobial activity was studied using a minimum inhibitory concentration (MIC) assay and confocal laser scanning microscopy of LIVE/DEAD-stained biofilms with COMSTAT analysis. In vitro toxicity of the degraded conjugate was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. UPLC–MS revealed that the fully “unmasked” dextrin–colistin conjugate composed of colistin bound to at least one linker, whereas larger species were composed of colistin with varying lengths of glucose units attached. Increasing the degree of dextrin modification by succinoylation typically led to a greater number of linkers bound to colistin. Greater antimicrobial and antibiofilm activity were observed for the fully “unmasked” conjugate compared to the partially degraded species (MIC = 0.25 and 2–8 μg/mL, respectively), whereas dextrin conjugation reduced colistin’s in vitro toxicity toward kidney cells, even after complete unmasking. This study highlights the importance of defining the structure–antimicrobial activity relationship for novel antibiotic derivatives and demonstrates the suitability of LC–MS to aid the design of biodegradable polymer–antibiotic conjugates
État de mal comitial généralisé après prise d'ibuprofène (Brufen®), révélateur d'un lupus érythémateux disséminé
Noncardiogenic pulmonary edema resulting from intravascular administration of contrast material.
Silicon wafers for industrial n-type SHJ solar cells: Bulk quality requirements, large-scale availability and guidelines for future developments
Influence of the undoped a Si H buffer layer on a Si H c Si heterojunctions from planar conductance and lifetime measurements
International audienceIn highly efficient amorphous silicon/crystalline silicon heterojunction (a-Si:H/c-Si) solar cells, the c-Si wafer is passivated by a nanometer-thin buffer layer, which is undoped amorphous silicon. Here, we report on the systematic measurement of the passivation quality (minority carrier effective lifetime) by photo-conductance decay and of the band bending in c-Si using the planar conductance technique. The thickness of the buffer layers is varied. An analytical model to calculate the band bending in c-Si is presented; it aids in understanding the influence of the buffer layer on the band bending. We find that when the buffer layer thickness increases the passivation quality increases and the band bending decreases. Therefore, we suggest that an optimum has to be found to reach good interface defect passivation and a high band bending
