31 research outputs found
Amorphous formulations of indomethacin and griseofulvin prepared by electrospinning
Following an array of optimization
experiments, two series of electrospun
polyvinylpyrrolidone (PVP) fibers were prepared. One set of fibers
contained various loadings of indomethacin, known to form stable glasses,
and the other griseofulvin (a poor glass former). Drug loadings of
up to 33% w/w were achieved. Electron microscopy data showed the fibers
largely to comprise smooth and uniform cylinders, with evidence for
solvent droplets in some samples. In all cases, the drug was found
to exist in the amorphous physical state in the fibers on the basis
of X-ray diffraction and differential scanning calorimetry (DSC) measurements.
Modulated temperature DSC showed that the relationship between a formulation’s
glass transition temperature (<i>T</i><sub>g</sub>) and
the drug loading follows the Gordon–Taylor equation, but not
the Fox equation. The results of Gordon–Taylor analysis indicated
that the drug/polymer interactions were stronger with indomethacin.
The interactions between drug and polymer were explored in more detail
using molecular modeling simulations and again found to be stronger
with indomethacin; the presence of significant intermolecular forces
was further confirmed using IR spectroscopy. The amorphous form of
both drugs was found to be stable after storage of the fibers for
8 months in a desiccator (relative humidity <25%). Finally, the
functional performance of the fibers was studied; in all cases, the
drug-loaded fibers released their drug cargo very rapidly, offering
accelerated dissolution over the pure drug
PLGA and PHBV Microsphere Formulations and Solid-State Characterization:Possible Implications for Local Delivery of Fusidic Acid for the Treatment and Prevention of Orthopaedic Infections
An Investigation into the Role of Polymeric Carriers on Crystal Growth within Amorphous Solid Dispersion Systems
Spider Minor Ampullate Silk Proteins Are Constituents of Prey Wrapping Silk in the Cob Weaver Latrodectus hesperus
Conserved C-terminal domain of spider tubuliform spidroin 1 contributes to extensibility in synthetic fibers
Spider silk is renowned for its extraordinary mechanical properties, having a balance of high tensile strength and extensibility. To date, the majority of studies have focused on the production of dragline silks from synthetic spider silk gene products. Here we report the first mechanical analysis of synthetic egg case silk fibers spun from the Latrodectus hesperus tubuliform silk proteins, TuSp1 and ECP-2. We provide evidence that recombinant ECP-2 proteins can be spun into fibers that display mechanical properties similar to other synthetic spider silks. We also demonstrate that silks spun from recombinant thioredoxin-TuSp1 fusion proteins that contain the conserved C-terminal domain exhibit increased extensibility and toughness when compared to the identical fibers spun from fusion proteins lacking the C-terminus. Mechanical analyses reveal that the properties of synthetic tubuliform silks can be modulated by altering the postspin draw ratios of the fibers. Fibers subject to increased draw ratios showed elevated tensile strength and decreased extensibility but maintained constant toughness. Wide-angle X-ray diffraction studies indicate that postdrawn fibers containing the C-terminal domain of TuSp1 have more amorphous content when compared to fibers lacking the C-terminus. Taken together, these studies demonstrate that recombinant tubuliform spidroins that contain the conserved C-terminal domain with embedded protein tags can be effectively spun into fibers, resulting in similar tensile strength but increased extensibility relative to nontagged recombinant dragline silk proteins spun from equivalently sized proteins
