2,828 research outputs found

    Power law correlations in galaxy distribution and finite volume effects from the Sloan Digital Sky Survey Data Release Four

    Get PDF
    We discuss the estimation of galaxy correlation properties in several volume limited samples, in different sky regions, obtained from the Fourth Data Release of the Sloan Digital Sky Survey. The small scale properties are characterized through the determination of the nearest neighbor probability distribution. By using a very conservative statistical analysis, in the range of scales [0.5,~30] Mpc/h we detect power-law correlations in the conditional density in redshift space, with an exponent \gamma=1.0 \pm 0.1. This behavior is stable in all different samples we considered thus it does not depend on galaxy luminosity. In the range of scales [~30,~100] Mpc/h we find evidences for systematic unaveraged fluctuations and we discuss in detail the problems induced by finite volume effects on the determination of the conditional density. We conclude that in such range of scales there is an evidence for a smaller power-law index of the conditional density. However we cannot distinguish between two possibilities: (i) that a crossover to homogeneity (corresponding to \gamma=0 in the conditional density) occurs before 100 Mpc/h, (ii) that correlations extend to scales of order 100 Mpc/h (with a smaller exponent 0 < \gamma <1). We emphasize that galaxy distributions in these samples present large fluctuations at the largest scales probed, corresponding to the presence of large scale structures extending up to the boundaries of the present survey. Finally we discuss several differences between the behavior of the conditional density in mock galaxy catalogs built from cosmological N-body simulations and real data. We discuss some theoretical implications of such a fact considering also the super-homogeneous features of primordial density fields.Comment: 13 pages, 19 figures, to be publsihed in Astronomy and Astrophysic

    New spectral functions of the near-ground albedo derived from aircraft diffraction spectrometer observations

    Get PDF
    The airborne spectral observations of the upward and downward irradiances are revisited to investigate the dependence of the near-ground albedo as a function of wavelength in the entire solar spectrum for different surfaces (sand, water, snow) and under different conditions (clear or cloudy sky). The radiative upward and downward fluxes were determined by a diffraction spectrometer flown on a research aircraft that was performing multiple flight paths near the ground. The results obtained show that the near-ground albedo does not generally increase with increasing wavelengths for all kinds of surfaces as is widely believed today. Particularly, in the case of water surfaces it was found that the albedo in the ultraviolet region is more or less independent of the wavelength on a long-term basis. Interestingly, in the visible and near-infrared spectra the water albedo obeys an almost constant power-law relationship with wavelength. In the case of sand surfaces it was found that the sand albedo is a quadratic function of wavelength, which becomes more accurate if the ultraviolet wavelengths are neglected. Finally, it was found that the spectral dependence of snow albedo behaves similarly to that of water, i.e. both decrease from the ultraviolet to the near-infrared wavelengths by 20–50%, despite the fact that their values differ by one order of magnitude (water albedo being lower). In addition, the snow albedo vs. ultraviolet wavelength is almost constant, while in the visible near-infrared spectrum the best simulation is achieved by a second-order polynomial, as in the case of sand, but with opposite slopes

    Some results of cislunar plasma research

    Get PDF
    The main results of plasma cislunar investigations, carried out during Luna-19 and Luna-22 spacecraft flights by means of dual frequency dispersion interferrometry, are briefly outlined. It is shown that a thin layer of plasma, with a height of several tens of kilometers and a maximum concentration of the order 1,000 electrons/cu cm exists above the solar illuminated lunar surface. A physical model of the formation and existence of such a plasma in cislunar space is proposed, taking into account the influence of local magnetic areas on the moon

    A quantum volume hologram

    Full text link
    We propose a new scheme for parallel spatially multimode quantum memory for light. The scheme is based on counter-propagating quantum signal wave and strong classical reference wave, like in a classical volume hologram, and therefore can be called a quantum volume hologram. The medium for the hologram consists of a spatially extended ensemble of atoms placed in a magnetic field. The write-in and read-out of this quantum hologram is as simple as that of its classical counterpart and consists of a single pass illumination. In addition we show that the present scheme for a quantum hologram is less sensitive to diffraction and therefore is capable of achieving higher density of storage of spatial modes as compared to previous proposals. A quantum hologram capable of storing entangled images can become an important ingredient in quantum information processing and quantum imaging.Comment: 8 pages, 2 figure

    Extension and estimation of correlations in Cold Dark Matter models

    Full text link
    We discuss the large scale properties of standard cold dark matter cosmological models characterizing the main features of the power-spectrum, of the two-point correlation function and of the mass variance. Both the real-space statistics have a very well defined behavior on large enough scales, where their amplitudes become smaller than unity. The correlation function, in the range 0<\xi(r)<1, is characterized by a typical length-scale r_c, at which \xi(r_c)=0, which is fixed by the physics of the early universe: beyond this scale it becomes negative, going to zero with a tail proportional to -(r^{-4}). These anti-correlations represent thus an important observational challenge to verify models in real space. The same length scale r_c characterizes the behavior of the mass variance which decays, for r>r_c, as r^{-4}, the fastest decay for any mass distribution. The length-scale r_c defines the maximum extension of (positively correlated) structures in these models. These are the features expected for the dark matter field: galaxies, which represent a biased field, however may have differences with respect to these behaviors, which we analyze. We then discuss the detectability of these real space features by considering several estimators of the two-point correlation function. By making tests on numerical simulations we emphasize the important role of finite size effects which should always be controlled for careful measurements.Comment: 18 pages, 27 figures, accepted for publication in Astronomy and Astrophysic
    corecore