1,906 research outputs found

    Differential rotation measurement of soft X-Ray corona

    Full text link
    The aim of this paper is to study the latitudinal variation in the solar rotation in soft X-ray corona. The time series bins are formed on different latitude regions of the solar full disk (SFD) images that extend from 80 degree South to 80 degree North. These SFD images are obtained with the soft X-ray telescope (SXT) on board the Yohkoh solar observatory. The autocorrelation analyses are performed with the time series that track the SXR flux modulations in the solar corona. Then for each year, extending from 1992 to 2001, we obtain the coronal sidereal rotation rate as a function of the latitude. The present analysis from SXR radiation reveals that; (i) the equatorial rotation rate of the corona is comparable to the rotation rate of the photosphere and the chromosphere, (ii) the differential profile with respect to the latitude varies throughout the period of the study; it is more in the year 1999 and least in 1994 and (iii) the equatorial rotation period varies systematically with sunspot numbers and indicates its dependence on the phases of the solar activity cycle.Comment: 9 Pages, 4 Figures, Accepted for Publication in MNRA

    Completely-Positive Non-Markovian Decoherence

    Full text link
    We propose an effective Hamiltonian approach to investigate decoherence of a quantum system in a non-Markovian reservoir, naturally imposing the complete positivity on the reduced dynamics of the system. The formalism is based on the notion of an effective reservoir, i.e., certain collective degrees of freedom in the reservoir that are responsible for the decoherence. As examples for completely positive decoherence, we present three typical decoherence processes for a qubit such as dephasing, depolarizing, and amplitude-damping. The effects of the non-Markovian decoherence are compared to the Markovian decoherence.Comment: 8 pages, 1 figur

    Radiating dipoles in photonic crystals

    Get PDF
    The radiation dynamics of a dipole antenna embedded in a Photonic Crystal are modeled by an initially excited harmonic oscillator coupled to a non--Markovian bath of harmonic oscillators representing the colored electromagnetic vacuum within the crystal. Realistic coupling constants based on the natural modes of the Photonic Crystal, i.e., Bloch waves and their associated dispersion relation, are derived. For simple model systems, well-known results such as decay times and emission spectra are reproduced. This approach enables direct incorporation of realistic band structure computations into studies of radiative emission from atoms and molecules within photonic crystals. We therefore provide a predictive and interpretative tool for experiments in both the microwave and optical regimes.Comment: Phys. Rev. E, accepte

    Beyond single-photon localization at the edge of a Photonic Band Gap

    Get PDF
    We study spontaneous emission in an atomic ladder system, with both transitions coupled near-resonantly to the edge of a photonic band gap continuum. The problem is solved through a recently developed technique and leads to the formation of a ``two-photon+atom'' bound state with fractional population trapping in both upper states. In the long-time limit, the atom can be found excited in a superposition of the upper states and a ``direct'' two-photon process coexists with the stepwise one. The sensitivity of the effect to the particular form of the density of states is also explored.Comment: to appear in Physical Review

    Antilymphoid antibody preconditioning and tacrolimus monotherapy for pediatric kidney transplantation

    Get PDF
    Objective: Heavy post-transplant immunosuppression may contribute to long-term immunosuppression dependence by subverting tolerogenic mechanisms; thus, we sought to determine if this undesirable consequence could be mitigated by pretransplant lymphoid depletion and minimalistic post-transplant monotherapy. Study design: Lymphoid depletion in 17 unselected pediatric recipients of live (n = 14) or deceased donor kidneys (n = 3) was accomplished with antithymocyte globulin (ATG) (n = 8) or alemtuzumab (n = 9). Tacrolimus was begun post-transplantation with subsequent lengthening of intervals between doses (spaced weaning). Maintenance immunosuppression, morbidity, graft function, and patient/graft survival were collated. Results: Steroids were added temporarily to treat rejection in two patients (both ATG subgroup) or to treat hemolytic anemia in two others. After 16 to 31 months (mean 22), patient and graft survival was 100% and 94%, respectively. The only graft loss was in a nonweaned noncompliant recipient. In the other 16, serum creatinine was 0.85 ± 0.35 mg/dL and creatinine clearance was 90.8 ± 22.1 mL/1.73 m2. All 16 patients are on monotherapy (15 tacrolimus, one sirolimus), and 14 receive every other day or 3 times per week doses. There were no wound or other infections. Two patients developed insulin-dependent diabetes. Conclusion: The strategy of lymphoid depletion and minimum post-transplant immunosuppression appears safe and effective for pediatric kidney recipients. © 2006 Elsevier Inc. All rights reserved

    Resonance fluorescence in a band gap material: Direct numerical simulation of non-Markovian evolution

    Get PDF
    A numerical method of calculating the non-Markovian evolution of a driven atom radiating into a structured continuum is developed. The formal solution for the atomic reduced density matrix is written as a Markovian algorithm by introducing a set of additional, virtual density matrices which follow, to the level of approximation of the algorithm, all the possible trajectories of the photons in the electromagnetic field. The technique is perturbative in the sense that more virtual density matrices are required as the product of the effective memory time and the effective coupling strength become larger. The number of density matrices required is given by 3M3^{M} where MM is the number of timesteps per memory time. The technique is applied to the problem of a driven two-level atom radiating close to a photonic band gap and the steady-state correlation function of the atom is calculated.Comment: 14 pages, 9 figure

    Novel Collective Effects in Integrated Photonics

    Full text link
    Superradiance, the enhanced collective emission of energy from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study theoretically the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance for the first time in waveguide arrays in integrated photonics. Furthermore, we describe how pairwise correlations within the ensemble can be measured with this architecture. These pairwise correlations are an integral part of the phenomenon of superradiance and have never been observed in experiments to date.Comment: 7 pages, 3 figure

    Non-Markovian quantum trajectories for spectral detection

    Full text link
    We present a formulation of non-Markovian quantum trajectories for open systems from a measurement theory perspective. In our treatment there are three distinct ways in which non-Markovian behavior can arise; a mode dependent coupling between bath (reservoir) and system, a dispersive bath, and by spectral detection of the output into the bath. In the first two cases the non-Markovian behavior is intrinsic to the interaction, in the third case the non-Markovian behavior arises from the method of detection. We focus in detail on the trajectories which simulate real-time spectral detection of the light emitted from a localized system. In this case, the non-Markovian behavior arises from the uncertainty in the time of emission of particles that are later detected. The results of computer simulations of the spectral detection of the spontaneous emission from a strongly driven two-level atom are presented

    The steady state quantum statistics of a non-Markovian atom laser

    Full text link
    We present a fully quantum mechanical treatment of a single-mode atomic cavity with a pumping mechanism and an output coupling to a continuum of external modes. This system is a schematic description of an atom laser. In the dilute limit where atom-atom interactions are negligible, we have been able to solve this model without making the Born and Markov approximations. When coupling into free space, it is shown that for reasonable parameters there is a bound state which does not disperse, which means that there is no steady state. This bound state does not exist when gravity is included, and in that case the system reaches a steady state. We develop equations of motion for the two-time correlation in the presence of pumping and gravity in the output modes. We then calculate the steady-state output energy flux from the laser.Comment: 14 pages (twocloumn), 6 figure

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review
    corecore