393 research outputs found
How the structure of the large subunit controls function in an oxygen-tolerant [NiFe]-hydrogenase
Salmonella enterica is an opportunistic pathogen that produces a [NiFe]-hydrogenase under aerobic conditions. In the present study, genetic engineering approaches were used to facilitate isolation of this enzyme, termed Hyd-5. The crystal structure was determined to a resolution of 3.2 Å and the hydro-genase was observed to comprise associated large and small subunits. The structure indicated that His(229) from the large subunit was close to the proximal [4Fe–3S] cluster in the small subunit. In addition, His(229) was observed to lie close to a buried glutamic acid (Glu(73)), which is conserved in oxygen-tolerant hydrogenases. His(229) and Glu(73) of the Hyd-5 large subunit were found to be important in both hydrogen oxidation activity and the oxygen-tolerance mechanism. Substitution of His(229) or Glu(73) with alanine led to a loss in the ability of Hyd-5 to oxidize hydrogen in air. Furthermore, the H229A variant was found to have lost the overpotential requirement for activity that is always observed with oxygen-tolerant [NiFe]-hydrogenases. It is possible that His(229) has a role in stabilizing the super-oxidized form of the proximal cluster in the presence of oxygen, and it is proposed that Glu(73)could play a supporting role in fine-tuning the chemistry of His(229) to enable this function
Transport of Proteins into Mitochondria
The mitochondrial ADP/ATP carrier is an integral transmembrane protein of the inner membrane. It is synthesized on cytoplasmic ribosomes. Kinetic data suggested that this protein is transferred into mitochondria in a posttranslational manner. The following results provide further evidence for such a mechanism and provide information on its details.
1. In homologous and heterologous translation systems the newly synthesized ADP/ATP carrier protein is present in the postribosomal supernatant.
2. Analysis by density gradient centrifugation and gel filtration shows, that the ADP/ATP carrier molecules in the postribosomal fraction are present as soluble complexes with apparent molecular weights of about 120000 and 500000 or larger. The carrier binds detergents such as Triton X-100 and deoxycholate forming mixed micelles with molecular weights of about 200000–400000.
3. Incubation of a postribosomal supernatant of a reticulocyte lysate containing newly synthesized ADP/ATP carrier with mitochondria isolated from Neurospora spheroplasts results in efficient transfer of the carrier into mitochondria. About 20–30% of the transferred carrier are resistant to proteinase in whole mitochondria. The authentic mature protein is also largely resistant to proteinase in whole mitochondria and sensitive after lysis of mitochondria with detergent. Integrity of mitochondria is a prerequisite for translocation into proteinase resistant position.
4. The transfer in vitro into a proteinase-resistant form is inhibited by the uncoupler carbonyl-cyanide m-chlorophenylhydrazone but not the proteinase-sensitive binding.
These observations suggest that the posttranslational transfer of ADP/ATP carrier occurs via the cytosolic space through a soluble oligomeric precursor form. This precursor is taken up by intact mitochondria into an integral position in the membrane. These findings are considered to be of general importance for the intracellular transfer of insoluble membrane proteins. They support the view that such proteins can exist in a water-soluble form its precursors and upon integration into the membrane undergo a conformational change. Uptake into the membrane may involve the cleavage of an additional sequence in some proteins, but this appears not to be a prerequisite as demonstrated by the ADP/ATP carrier protein
Requirement of a Membrane Potential for the Posttranslational Transfer of Proteins into Mitochondsria
Posttranslational transfer of most precursor proteins into mitochondria is dependent on energization of the mitochondria. Experiments were carried out to determine whether the membrane potential or the intramitochondrial ATP is the immediate energy source. Transfer in vitro of precursors to the ADP/ATP carrier and to ATPase subunit 9 into isolated Neurospora mitochondria was investigated. Under conditions where the level of intramitochondrial ATP was high and the membrane potential was dissipated, import and processing of these precursor proteins did not take place. On the other hand, precursors were taken up and processed when the intramitochondrial ATP level was low, but the membrane potential was not dissipated. We conclude that a membrane potential is involved in the import of those mitochondrial precursor proteins which require energy for intracellular translocatio
Human-centred automation to simplify the path to social and economic sustainability
Musculoskeletal Disorders (MSDs) pose a serious threat to sustainability in manufacturing. In particular, this phenomenon impacts the sustainability indicators of worker health and safety and the Gross Domestic Product (GDP). Effective MSD prevention measures would therefore constitute a remarkable contribution to social and economic sustainability. This chapter provides first an outline of existing methods to prevent MSD at the workplace. Analysis of the approaches yields that effective solutions require earmarked finances as well as qualified personnel, both of which are not affordable for many companies. In pursuit of solutions, Human-centred Automation (HCA), a recent paradigm in manufacturing, proposes the design of manufacturing systems using intelligent technology to support the worker instead of replacing him/her. HCA has the unique potential of reducing the effort needed to implement MSD prevention strategies by simplifying the path to social and economic sustainability. This chapter demonstrates this process with the example of the “Working Posture Controller” (WPC), which illustrates how the HCA concept can be applied. Finally, the lessons learned from the case are outlined, providing a vision of how future workplaces can benefit from HCA
NOX2, p22phox and p47phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species.
BACKGROUND: NADPH oxidases play an essential role in reactive oxygen species (ROS)-based signaling in the heart. Previously, we have demonstrated that (peri)nuclear expression of the catalytic NADPH oxidase subunit NOX2 in stressed cardiomyocytes, e.g. under ischemia or high concentrations of homocysteine, is an important step in the induction of apoptosis in these cells. Here this ischemia-induced nuclear targeting and activation of NOX2 was specified in cardiomyocytes. METHODS: The effect of ischemia, mimicked by metabolic inhibition, on nuclear localization of NOX2 and the NADPH oxidase subunits p22(phox) and p47(phox), was analyzed in rat neonatal cardiomyoblasts (H9c2 cells) using Western blot, immuno-electron microscopy and digital-imaging microscopy. RESULTS: NOX2 expression significantly increased in nuclear fractions of ischemic H9c2 cells. In addition, in these cells NOX2 was found to colocalize in the nuclear envelope with nuclear pore complexes, p22(phox), p47(phox) and nitrotyrosine residues, a marker for the generation of ROS. Inhibition of NADPH oxidase activity, with apocynin and DPI, significantly reduced (peri)nuclear expression of nitrotyrosine. CONCLUSION: We for the first time show that NOX2, p22(phox) and p47(phox) are targeted to and produce ROS at the nuclear pore complex in ischemic cardiomyocytes
(De)synchronization of advanced visual information and ball flight characteristics constrains emergent information–movement couplings during one-handed catching
Advance visual information of a projection action and ball flight information is important for organizing dynamic interceptive actions like catching. However, how the central nervous system (CNS) manages the relationship between advance visual information and emerging ball flight information in regulating behavior is less well understood. Here, we sought to examine the extent that advance visual information to the CNS constrains regulation of catching actions by synchronizing and desynchronizing its relationship with ball trajectory characteristics. Novel technology was used to present video footage of an actor throwing a ball at three different speeds, integrated with information from a real ball projected by a machine set to the three speeds. The technology enabled three synchronized and six desynchronized conditions between advance visual information and subsequent ball flight trajectories. Catching performance, kinematic data from the catching hand and gaze behaviors were recorded. Findings revealed that desynchronization of video images of ball projection shaped emergent catching behaviors. Footage of slower throws, paired with faster ball projection speeds, caused catching performance decrements. Timing in early phases of action was organized by the CNS to match the advance visual information presented. In later phases, like the grasp, ball flight information constraints adapted and regulated behaviors. Gaze behaviors showed increased ball projection speed resulted in participants tracking the ball for a smaller percentage of ball flight. Findings highlighted the role of the two visual systems in perception and action, implicating the importance of coupling advanced visual information and ball flight to regulate emergent movement coordination tendencies during interceptive behaviors
Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts
Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host–symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry
The Evolution of Respiratory Chain Complex I from a Smaller Last Common Ancestor Consisting of 11 Protein Subunits
The NADH:quinone oxidoreductase (complex I) has evolved from a combination of smaller functional building blocks. Chloroplasts and cyanobacteria contain a complex I-like enzyme having only 11 subunits. This enzyme lacks the N-module which harbors the NADH binding site and the flavin and iron–sulfur cluster prosthetic groups. A complex I-homologous enzyme found in some archaea contains an F420 dehydrogenase subunit denoted as FpoF rather than the N-module. In the present study, all currently available whole genome sequences were used to survey the occurrence of the different types of complex I in the different kingdoms of life. Notably, the 11-subunit version of complex I was found to be widely distributed, both in the archaeal and in the eubacterial kingdoms, whereas the 14-subunit classical complex I was found only in certain eubacterial phyla. The FpoF-containing complex I was present in Euryarchaeota but not in Crenarchaeota, which contained the 11-subunit complex I. The 11-subunit enzymes showed a primary sequence variability as great or greater than the full-size 14-subunit complex I, but differed distinctly from the membrane-bound hydrogenases. We conclude that this type of compact 11-subunit complex I is ancestral to all present-day complex I enzymes. No designated partner protein, acting as an electron delivery device, could be found for the compact version of complex I. We propose that the primordial complex I, and many of the present-day 11-subunit versions of it, operate without a designated partner protein but are capable of interaction with several different electron donor or acceptor proteins
Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments
Background
Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation.
Principal Findings
We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean.
Significance
This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles
Discovery of anaerobic lithoheterotrophic haloarchaea, ubiquitous in hypersaline habitats
Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.</p
- …
