2,151 research outputs found
Calibration approach to electron probe microanalysis: A study with PWA-1480, a nickel base superalloy
The utility of an indirect calibration approach in electron probe microanalysis is explored. The methodology developed is based on establishing a functional relationship between the uncorrected k-ratios and the corresponding concentrations obtained using one of the ZAF correction schemes, for all the desired elements in the concentration range of interest. In cases where a very large number of analyses are desired, such a technique significantly reduces the total time required for the microprobe analysis without any significant loss of precision in the data. A typical application of the method in the concentration mapping of the transverse cross-section of a dendrite in directionally solidified PWA-1480, a nickel-based superalloy, is described
Secondary arm coarsening and microsegregation in superalloy PWA-1480 single crystals: Effect of low gravity
Single crystal specimens of nickel base superalloy PWA-1480 were directionally solidified on ground and during low gravity (20 sec) and high gravity (90 sec) parabolic maneuver of KC-135 aircraft. Thermal profiles were measured during solidification by two in-situ thermocouples positioned along the sample length. The samples were quenched during either high or low gravity cycles so as to freeze the structures of the mushy zone developing under different gravity levels. Microsegregation was measured by examining the solutal profiles on several transverse cross-sections across primary dendrites along their length in the quenched mushy zone. Effect of gravity level on secondary arm coarsening kinetics and microsegregation have been investigated. The results indicate that there is no appreciable difference in the microsegregation and coarsening kinetics behavior in the specimens grown under high or low gravity. This suggests that short duration changes in gravity/levels (0.02 to 1.7 g) do not influence convection in the interdendritic region. Examination of the role of natural convection, in the melt near the primary dendrite tips, on secondary arm spacings requires low gravity periods longer than presently available on KC-135. Secondary arm coarsening kinetics show a reasonable fit with the predictions from a simple analytical model proposed by Kirkwood for a binary alloy
Magnetic and Low Temperature Conductivity Studies in Oxidized Nano Ni Films
A set of single layered nanostructured Ni films of thickness, t = 25 nm, 50 nm, 75 nm and 100 nm have been deposited using electron beam gun evaporation technique at 473 K under high vacuum condition. From the grazing incidence X-ray diffraction (GIXRD) studies, NiO phase formation has been noted. Grain sizes of the films were determined. The microstructure was examined by scanning electron microscope (SEM) studies. Average surface roughness was determined by atomic force microscope (AFM). The room temperature magnetization has been measured using the vibrating sample magnetometer (VSM). The coercive field was observed to be increasing with increasing t and became maximum for t = 75 nm and decreases for further increase in t. The behavior of coercive field with t indicated softness of the films. Low temperature electrical conductivity in the range from 5 K to 300 K has been measured. Temperature dependence of electrical conductivity showed semiconducting behavior. At temperatures above θD/2 (θD is the Debye temperature), the conductivity behavior has been understood in the light of Mott’s small polaron hopping model and activation energies were determined. An attempt has been made to understand conductivity variation below θD/2 using variable range hopping models due to Mott and Greaves.
When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2371
Investigations on Hepatoprotective Activity of Leaf Extracts of Aegle marmelos (L.) Corr. (Rutaceae)
The present study was carried out to screen and evaluate the hepatoprotective activity of leaf extracts of Aegle marmelos (L.) Corr. Hepatoprotective activities of ethanolic and aqueous extracts of A. marmelos were examined against carbon tetrachloride induced liver damage in mice using silymarin as control. Enzyme activities of Serum Glutamate Oxaloacetate Transaminase (SGOT), Serum Glutamate Pyruvate Transaminase (SGPT) and Alkaline Phosphatase (ALP) were analyzed. Results indicate that ethanolic and aqueous leaf extracts of A. marmelos had moderate activity over carbon tetrachloride treatment as compared to control. Results of the present investigation confirm the traditional uses of this plant as a potential hepatoprotective agent
Studies on Hepatoprotective Properties of Leaf Extracts of Azadirachta indica A. Juss (Meliaceae)
The present study was carried out to evaluate the hepatoprotective role of leaf extracts of Azadirachta indica A. Juss. Hepatoprotective activities of ethanolic and aqueous extracts of A. indica were examined against carbon tetrachloride induced liver damage in mice using silymarin as control. Enzyme activities of Serum Glutamate Oxaloacetate Transaminase (SGOT), Serum Glutamate Pyruvate Transaminase (SGPT) and Alkaline Phosphatase (ALP) were analyzed. Phytochemical leaf extracts of A. indica exhibited significant hepatoprotective activity. Ethanolic and aqueous leaf extracts of A. indica exhibited moderate activity over carbon tetrachloride treated animals. Results confirm the traditional - ethnomedicinal use of A. indica as a potential source of hepatoprotective agent
Sodium-activated potassium channels shape peripheral auditory function and activity of the primary auditory neurons in mice
Potassium (K+) channels shape the response properties of neurons. Although enormous progress has been made to characterize K+ channels in the primary auditory neurons, the molecular identities of many of these channels and their contributions to hearing in vivo remain unknown. Using a combination of RNA sequencing and single molecule fluorescent in situ hybridization, we localized expression of transcripts encoding the sodium-activated potassium channels K(Na)1.1(SLO2.2/Slack) and K(Na)1.2 (SLO2.1/Slick) to the primary auditory neurons (spiral ganglion neurons, SGNs). To examine the contribution of these channels to function of the SGNs in vivo, we measured auditory brainstem responses in K(Na)1.1/1.2 double knockout (DKO) mice. Although auditory brainstem response (wave I) thresholds were not altered, the amplitudes of suprathreshold responses were reduced in DKO mice. This reduction in amplitude occurred despite normal numbers and molecular architecture of the SGNs and their synapses with the inner hair cells. Patch clamp electrophysiology of SGNs isolated from DKO mice displayed altered membrane properties, including reduced action potential thresholds and amplitudes. These findings show that K(Na)1 channel activity is essential for normal cochlear function and suggest that early forms of hearing loss may result from physiological changes in the activity of the primary auditory neurons
- …
