578 research outputs found
Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array
This paper summarizes a search for radio wavelength counterparts to candidate
gravitational wave events. The identification of an electromagnetic counterpart
could provide a more complete understanding of a gravitational wave event,
including such characteristics as the location and the nature of the
progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies
which were identified as potential hosts for two candidate gravitational wave
events. We summarize our procedures and discuss preliminary results.Comment: 4 pages; to appear in the New Horizons in Time Domain Astronomy,
Proceedings of IAU Symposium 285, eds. R. E. M. Griffin, R. J. Hanisch & R.
Seama
Benefits of joint LIGO -- Virgo coincidence searches for burst and inspiral signals
We examine the benefits of performing a joint LIGO--Virgo search for
transient signals. We do this by adding burst and inspiral signals to 24 hours
of simulated detector data. We find significant advantages to performing a
joint coincidence analysis, above either a LIGO only or Virgo only search.
These include an increased detection efficiency, at a fixed false alarm rate,
to both burst and inspiral events and an ability to reconstruct the sky
location of a signal.Comment: 11 pages 8 figures, Amaldi 6 proceeding
Self-force Regularization in the Schwarzschild Spacetime
We discuss the gravitational self-force on a particle in a black hole
space-time. For a point particle, the full (bare) self-force diverges. The
metric perturbation induced by a particle can be divided into two parts, the
direct part (or the S part) and the tail part (or the R part), in the harmonic
gauge, and the regularized self-force is derived from the R part which is
regular and satisfies the source-free perturbed Einstein equations. But this
formulation is abstract, so when we apply to black hole-particle systems, there
are many problems to be overcome in order to derive a concrete self-force.
These problems are roughly divided into two parts. They are the problem of
regularizing the divergent self-force, i.e., ``subtraction problem'' and the
problem of the singularity in gauge transformation, i.e., ``gauge problem''. In
this paper, we discuss these problems in the Schwarzschild background and
report some recent progress.Comment: 34 pages, 2 figures, submitted to CQG, special volume for Radiation
Reaction (CAPRA7
A first comparison of search methods for gravitational wave bursts using LIGO and Virgo simulated data
We present a comparative study of 6 search methods for gravitational wave
bursts using simulated LIGO and Virgo noise data. The data's spectra were
chosen to follow the design sensitivity of the two 4km LIGO interferometers and
the 3km Virgo interferometer. The searches were applied on replicas of the data
sets to which 8 different signals were injected. Three figures of merit were
employed in this analysis: (a) Receiver Operator Characteristic curves, (b)
necessary signal to noise ratios for the searches to achieve 50 percent and 90
percent efficiencies, and (c) variance and bias for the estimation of the
arrival time of a gravitational wave burst.Comment: GWDAW9 proceeding
Feasibility of measuring the Shapiro time delay over meter-scale distances
The time delay of light as it passes by a massive object, first calculated by
Shapiro in 1964, is a hallmark of the curvature of space-time. To date, all
measurements of the Shapiro time delay have been made over solar-system
distance scales. We show that the new generation of kilometer-scale laser
interferometers being constructed as gravitational wave detectors, in
particular Advanced LIGO, will in principle be sensitive enough to measure
variations in the Shapiro time delay produced by a suitably designed rotating
object placed near the laser beam. We show that such an apparatus is feasible
(though not easy) to construct, present an example design, and calculate the
signal that would be detectable by Advanced LIGO. This offers the first
opportunity to measure space-time curvature effects on a laboratory distance
scale.Comment: 13 pages, 6 figures; v3 has updated instrumental noise curves plus a
few text edits; resubmitted to Classical and Quantum Gravit
Measuring neutrino masses with a future galaxy survey
We perform a detailed forecast on how well a Euclid-like photometric galaxy
and cosmic shear survey will be able to constrain the absolute neutrino mass
scale. Adopting conservative assumptions about the survey specifications and
assuming complete ignorance of the galaxy bias, we estimate that the minimum
mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5
sigma to 2.5 sigma significance, depending on the model complexity, using a
combination of galaxy and cosmic shear power spectrum measurements in
conjunction with CMB temperature and polarisation observations from Planck.
With better knowledge of the galaxy bias, the significance of the detection
could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor
Planck+galaxy alone can achieve this level of sensitivity; it is the combined
effect of galaxy and cosmic shear power spectrum measurements that breaks the
persistent degeneracies between the neutrino mass, the physical matter density,
and the Hubble parameter. Notwithstanding this remarkable sensitivity to sum
m_nu, Euclid-like shear and galaxy data will not be sensitive to the exact mass
spectrum of the neutrino sector; no significant bias (< 1 sigma) in the
parameter estimation is induced by fitting inaccurate models of the neutrino
mass splittings to the mock data, nor does the goodness-of-fit of these models
suffer any significant degradation relative to the true one (Delta chi_eff ^2<
1).Comment: v1: 29 pages, 10 figures. v2: 33 pages, 12 figures; added sections on
shape evolution and constraints in more complex models, accepted for
publication in JCA
Hierarchical Hough all-sky search for periodic gravitational waves in LIGO S5 data
We describe a new pipeline used to analyze the data from the fifth science
run (S5) of the LIGO detectors to search for continuous gravitational waves
from isolated spinning neutron stars. The method employed is based on the Hough
transform, which is a semi-coherent, computationally efficient, and robust
pattern recognition technique. The Hough transform is used to find signals in
the time-frequency plane of the data whose frequency evolution fits the pattern
produced by the Doppler shift imposed on the signal by the Earth's motion and
the pulsar's spin-down during the observation period. The main differences with
respect to previous Hough all-sky searches are described. These differences
include the use of a two-step hierarchical Hough search, analysis of
coincidences among the candidates produced in the first and second year of S5,
and veto strategies based on a test.Comment: 7 pages, 2 figures, Amaldi08 proceedings, submitted to JPC
GW170817 : Observation of gravitational waves from a binary neutron star inspiral
On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×104 years. We infer the component masses of the binary to be between 0.86 and 2.26 M⊙, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17–1.60 M⊙, with the total mass of the system 2.74+0.04−0.01M⊙. The source was localized within a sky region of 28 deg2(90% probability) and had a luminosity distance of 40+8−14 Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology
Behavioral metabolution: the adaptive and evolutionary potential of metabolism-based chemotaxis
We use a minimal model of metabolism-based chemotaxis to show how a coupling between metabolism and behavior can affect evolutionary dynamics in a process we refer to as behavioral metabolution. This mutual influence can function as an in-the-moment, intrinsic evaluation of the adaptive value of a novel situation, such as an encounter with a compound that activates new metabolic pathways. Our model demonstrates how changes to metabolic pathways can lead to improvement of behavioral strategies, and conversely, how behavior can contribute to the exploration and fixation of new metabolic pathways. These examples indicate the potentially important role that the interplay between behavior and metabolism could have played in shaping adaptive evolution in early life and protolife. We argue that the processes illustrated by these models can be interpreted as an unorthodox instantiation of the principles of evolution by random variation and selective retention. We then discuss how the interaction between metabolism and behavior can facilitate evolution through (i) increasing exposure to environmental variation, (ii) making more likely the fixation of some beneficial metabolic pathways, (iii) providing a mechanism for in-the-moment adaptation to changes in the environment and to changes in the organization of the organism itself, and (iv) generating conditions that are conducive to speciatio
- …
