143 research outputs found
Scaling study of the pion electroproduction cross sections and the pion form factor
The H()n cross section was measured for a range of
four-momentum transfer up to =3.91 GeV at values of the invariant
mass, , above the resonance region. The -dependence of the longitudinal
component is consistent with the -scaling prediction for hard exclusive
processes. This suggests that perturbative QCD concepts are applicable at
rather low values of . Pion form factor results, while consistent with the
-scaling prediction, are inconsistent in magnitude with perturbative QCD
calculations. The extraction of Generalized Parton Distributions from hard
exclusive processes assumes the dominance of the longitudinal term. However,
transverse contributions to the cross section are still significant at
=3.91 GeV.Comment: 6 pages, 3 figure
Study of the A(e,e') Reaction on H, H, C, Al, Cu and Au
Cross sections for the p()n process on H, H, C,
Al, Cu and Au targets were measured at the Thomas
Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the
nuclear transparencies. Data were taken for four-momentum transfers ranging
from =1.1 to 4.8 GeV for a fixed center of mass energy of =2.14
GeV. The ratio of and was extracted from the measured
cross sections for H, H, C and Cu targets at = 2.15
and 4.0 GeV allowing for additional studies of the reaction mechanism. The
experimental setup and the analysis of the data are described in detail
including systematic studies needed to obtain the results. The results for the
nuclear transparency and the differential cross sections as a function of the
pion momentum at the different values of are presented. Global features
of the data are discussed and the data are compared with the results of model
calculations for the p()n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR
Scaling of the F_2 structure function in nuclei and quark distributions at x>1
We present new data on electron scattering from a range of nuclei taken in
Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the
cross section for , which is sensitive to short range contributions to the
nuclear wave-function, and in deep inelastic scattering corresponds to probing
extremely high momentum quarks. This result agrees with higher energy muon
scattering measurements, but is in sharp contrast to neutrino scattering
measurements which suggested a dramatic enhancement in the distribution of the
`super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in
^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie
Strange Quark Contributions to Parity-Violating Asymmetries in the Backward Angle G0 Electron Scattering Experiment
We have measured parity-violating asymmetries in elastic electron-proton and
quasi-elastic electron-deuteron scattering at Q^2 = 0.22 and 0.63 GeV^2. They
are sensitive to strange quark contributions to currents in the nucleon, and to
the nucleon axial current. The results indicate strange quark contributions of
< 10% of the charge and magnetic nucleon form factors at these four-momentum
transfers. We also present the first measurement of anapole moment effects in
the axial current at these four-momentum transfers.Comment: 5 pages, 2 figures, changed references, typo, and conten
Transverse Beam Spin Asymmetries at Backward Angles in Elastic Electron-Proton and Quasi-elastic Electron-Deuteron Scattering
We have measured the beam-normal single-spin asymmetries in elastic
scattering of transversely polarized electrons from the proton, and performed
the first measurement in quasi-elastic scattering on the deuteron, at backward
angles (lab scattering angle of 108 degrees) for Q2 = 0.22 GeV^2/c^2 and 0.63
GeV^2/c^2 at beam energies of 362 MeV and 687 MeV, respectively. The asymmetry
arises due to the imaginary part of the interference of the two-photon exchange
amplitude with that of single photon exchange. Results for the proton are
consistent with a model calculation which includes inelastic intermediate
hadronic (piN) states. An estimate of the beam-normal single-spin asymmetry for
the scattering from the neutron is made using a quasi-static deuterium
approximation, and is also in agreement with theory
Charged pion form factor between Q^2=0.60 and 2.45 GeV^2. II. Determination of, and results for, the pion form factor
The charged pion form factor, Fpi(Q^2), is an important quantity which can be
used to advance our knowledge of hadronic structure. However, the extraction of
Fpi from data requires a model of the 1H(e,e'pi+)n reaction, and thus is
inherently model dependent. Therefore, a detailed description of the extraction
of the charged pion form factor from electroproduction data obtained recently
at Jefferson Lab is presented, with particular focus given to the dominant
uncertainties in this procedure. Results for Fpi are presented for
Q^2=0.60-2.45 GeV^2. Above Q^2=1.5 GeV^2, the Fpi values are systematically
below the monopole parameterization that describes the low Q^2 data used to
determine the pion charge radius. The pion form factor can be calculated in a
wide variety of theoretical approaches, and the experimental results are
compared to a number of calculations. This comparison is helpful in
understanding the role of soft versus hard contributions to hadronic structure
in the intermediate Q^2 regime.Comment: 18 pages, 11 figure
Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering
We have measured the beam-normal single-spin asymmetry in elastic scattering
of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 =
0.15, 0.25 (GeV/c)^2. The results are inconsistent with calculations solely
using the elastic nucleon intermediate state, and generally agree with
calculations with significant inelastic hadronic intermediate state
contributions. A_n provides a direct probe of the imaginary component of the
2-gamma exchange amplitude, the complete description of which is important in
the interpretation of data from precision electron-scattering experiments.Comment: 5 pages, 3 figures, submitted to Physical Review Letters; shortened
to meet PRL length limit, clarified some text after referee's comment
Measurements of electron-proton elastic cross sections for
We report on precision measurements of the elastic cross section for
electron-proton scattering performed in Hall C at Jefferson Lab. The
measurements were made at 28 unique kinematic settings covering a range in
momentum transfer of 0.4 5.5 . These measurements
represent a significant contribution to the world's cross section data set in
the range where a large discrepancy currently exists between the ratio of
electric to magnetic proton form factors extracted from previous cross section
measurements and that recently measured via polarization transfer in Hall A at
Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace
A precise measurement of the deuteron elastic structure function A(Q^2)
The A(Q^2) structure function in elastic electron-deuteron scattering was
measured at six momentum transfers Q^2 between 0.66 and 1.80 (GeV/c)^2 in Hall
C at Jefferson Laboratory. The scattered electrons and recoil deuterons were
detected in coincidence, at a fixed deuteron angle of 60.5 degrees. These new
precise measurements resolve discrepancies between older sets of data. They put
significant constraints on existing models of the deuteron electromagnetic
structure, and on the strength of isoscalar meson exchange currents.Comment: 3 LaTeX pages plus 2 PS figure
- …
