1,412 research outputs found

    The value and challenges of collegiality in practice

    Get PDF
    The ability to work optimally with colleagues is considered to be a valuable determinant of success, but collegiality is a challenge to assess. Could you be more collegial, and what might be the benefits and drawbacks for clinical practice? How could you be more collegial and foster more collegiality amongst those you work with? What is collegiality and what does it mean to be collegial? Collegiality can be defined as the relationship between individuals working towards a common purpose within an organisation. The concept has its origins in the roman practice of sharing responsibility equally between government officials of the same rank in order to prevent a single individual from gaining too much power. In contrast, managerialism does not provide opportunities for exploring democratic consensus because it promotes being responsive and obedient to implementing the wishes of authority (Dearlove, 1997, King, 2004). Collegiality emphasises trust, independent thinking and sharing between co-workers. This encourages both autonomy and mutual respect and can impact on organisational efficacy (Donohoo, 2017). In modern day practice, the focus is less on sharing responsibility between officials of the same rank and more on ensuring that all employees within an organisation are treated with equal respect as individual people (Lorenzen, 2006)

    Relationships among HIV infection, metabolic risk factors, and left ventricular structure and function

    Get PDF
    Our objective was to determine if the presence of metabolic complications (MC) conveyed an additional risk for left ventricular (LV) dysfunction in people with HIV. HIV(+) and HIV(−) men and women were categorized into four groups: (1) HIV(+) with MC (43±7 years, n=64), (2) HIV(+) without MC (42±7 years, n=59), (3) HIV(−) with MC (44±8 years, n=37), or (4) HIV(−) controls without MC (42±8 years, n=41). All participants underwent two-dimensional (2-D), Doppler, and tissue Doppler echocardiography. Overall, the prevalence of systolic dysfunction (15 vs. 4%, p=0.02) and LV hypertrophy (9 vs. 1%, p=0.03) was greater in HIV(+) than in HIV(−) participants. Participants with MC had a greater prevalence of LV hypertrophy (10% vs. 1%). Early mitral annular velocity during diastole was significantly (p<0.005) lower in groups with MC (HIV(+)/MC(+): 11.6±2.3, HIV(−)/MC(+): 12.0±2.3 vs. HIV(+)/MC(−): 12.4±2.3, HIV(−)/MC(−): 13.1±2.4 cm/s) and tended to be lower in groups with HIV (p=0.10). However, there was no interaction effect of HIV and MC for any systolic or diastolic variable. Regardless of HIV status, participants with MC had reduced LV diastolic function. Although both the presence of MC and HIV infection were associated with lower diastolic function, there was no additive negative effect of HIV on diastolic function beyond the effect of MC. Also, HIV was independently associated with lower systolic function. Clinical monitoring of LV function in individuals with metabolic risk factors, regardless of HIV status, is warranted

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    A transcriptomic snapshot of early molecular communication between Pasteuria penetrans and Meloidogyne incognita

    Get PDF
    © The Author(s). 2018Background: Southern root-knot nematode Meloidogyne incognita (Kofoid and White, 1919), Chitwood, 1949 is a key pest of agricultural crops. Pasteuria penetrans is a hyperparasitic bacterium capable of suppressing the nematode reproduction, and represents a typical coevolved pathogen-hyperparasite system. Attachment of Pasteuria endospores to the cuticle of second-stage nematode juveniles is the first and pivotal step in the bacterial infection. RNA-Seq was used to understand the early transcriptional response of the root-knot nematode at 8 h post Pasteuria endospore attachment. Results: A total of 52,485 transcripts were assembled from the high quality (HQ) reads, out of which 582 transcripts were found differentially expressed in the Pasteuria endospore encumbered J2 s, of which 229 were up-regulated and 353 were down-regulated. Pasteuria infection caused a suppression of the protein synthesis machinery of the nematode. Several of the differentially expressed transcripts were putatively involved in nematode innate immunity, signaling, stress responses, endospore attachment process and post-attachment behavioral modification of the juveniles. The expression profiles of fifteen selected transcripts were validated to be true by the qRT PCR. RNAi based silencing of transcripts coding for fructose bisphosphate aldolase and glucosyl transferase caused a reduction in endospore attachment as compared to the controls, whereas, silencing of aspartic protease and ubiquitin coding transcripts resulted in higher incidence of endospore attachment on the nematode cuticle. Conclusions: Here we provide evidence of an early transcriptional response by the nematode upon infection by Pasteuria prior to root invasion. We found that adhesion of Pasteuria endospores to the cuticle induced a down-regulated protein response in the nematode. In addition, we show that fructose bisphosphate aldolase, glucosyl transferase, aspartic protease and ubiquitin coding transcripts are involved in modulating the endospore attachment on the nematode cuticle. Our results add new and significant information to the existing knowledge on early molecular interaction between M. incognita and P. penetrans.Peer reviewedFinal Published versio

    Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.Comment: 7 pages, 4 figures + 1 tabl

    Strangelet search at RHIC

    Full text link
    Two position sensitive Shower Maximum Detector (SMDs) for Zero-Degree Calorimeters (ZDCs) were installed by STAR before run 2004 at both upstream and downstream from the interaction point along the beam axis where particles with small rigidity are swept away by strong magnetic field. The ZDC-SMDs provides information about neutral energy deposition as a function of transverse position in ZDCs. We report the preliminary results of strangelet search from a triggered data-set sampling 100 million Au+Au collisions at top RHIC energy.Comment: Strange Quark Matter 2004 conference proceedin

    System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Get PDF
    We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)
    corecore