2,048 research outputs found
Umklapp scattering of pairs in BCS superconductivity theory
The BCS theory of superconductivity is extended to recognize pairing of
electrons by both normal and umklapp scattering. Application of the variational
approach shows that coexistence of normal and umklapp scattering frustrates
superconductivity.Comment: 9 pages, 5 figures. to be published in Journal of Physics: Condensed
Matte
Dissipation of Quasiclassical Turbulence in Superfluid He
We compare the decay of turbulence in superfluid He produced by a moving
grid to the decay of turbulence created by either impulsive spin-down to rest
or by intense ion injection. In all cases the vortex line density decays at
late time as . At temperatures above 0.8 K, all methods
result in the same rate of decay. Below 0.8 K, the spin-down turbulence
maintains initial rotation and decays slower than grid turbulence and ion-jet
turbulence. This may be due to a decoupling of the large-scale superfluid flow
from the normal component at low temperatures, which changes its effective
boundary condition from no-slip to slip.Comment: Main article: 5 pages, 3 figures. Supplemental material: 4 pages, 3
figures. Accepted for publication in Physical Review Letter
First detection of ammonia in M82
We report the detection of the (J,K) = (1,1), (2,2), and (3,3) inversion
lines of ammonia (NH3) towards the south--western molecular lobe in M82. The
relative intensities of the ammonia lines are characterized by a rotational
temperature of T_rot=29+/-5 K which implies an average kinetic temperature of
T_kin~60 K. A Gaussian decomposition of the observed spectra indicates
increasing kinetic temperatures towards the nucleus of M82, consistent with
recent findings based on CO observations. The observations imply a very low NH3
abundance relative to H2, X(NH3)~5x10^(-10). We present evidence for a
decreasing NH3 abundance towards the central active regions in M82 and
interpret this abundance gradient in terms of photodissociation of NH3 in PDRs.
The low temperature derived here from NH3 also explains the apparent
underabundance of complex molecules like CH_3OH and HNCO, which has previously
been reported.Comment: 4 pages, 4 figures, accepted by ApJ
Composition of Ices in Low-Mass Extrasolar Planets
We study the formation conditions of icy planetesimals in protoplanetary
disks in order to determine the composition of ices in small and cold
extrasolar planets. Assuming that ices are formed from hydrates, clathrates,
and pure condensates, we calculate their mass fractions with respect to the
total quantity of ices included in planetesimals, for a grid of disk models. We
find that the composition of ices weakly depends on the adopted disk
thermodynamic conditions, and is rather influenced by the initial composition
of the gas phase. The use of a plausible range of molecular abundance ratios
and the variation of the relative elemental carbon over oxygen ratio in the gas
phase of protoplanetary disks, allow us to apply our model to a wide range of
planetary systems. Our results can thus be used to constrain the icy/volatile
phase composition of cold planets evidenced by microlensing surveys,
hypothetical ocean-planets and carbon planets, which could be detected by Corot
or Kepler.Comment: Accepted for publication in The Astrophysical Journa
A Multi-Wavelength High Resolution Study of the S255 Star Forming Region. General structure and kinematics
We present observational data for two main components (S255IR and S255N) of
the S255 high mass star forming region in continuum and molecular lines
obtained at 1.3 mm and 1.1 mm with the SMA, at 1.3 cm with the VLA and at 23
and 50 cm with the GMRT. The angular resolution was from ~ 2" to ~ 5" for all
instruments. With the SMA we detected a total of about 50 spectral lines of 20
different molecules (including isotopologues). About half of the lines and half
of the species (in particular N2H+, SiO, C34S, DCN, DNC, DCO+, HC3N, H2CO,
H2CS, SO2) have not been previously reported in S255IR and partly in S255N at
high angular resolution. Our data reveal several new clumps in the S255IR and
S255N areas by their millimeter wave continuum emission. Masses of these clumps
are estimated at a few solar masses. The line widths greatly exceed expected
thermal widths. These clumps have practically no association with NIR or radio
continuum sources, implying a very early stage of evolution. At the same time,
our SiO data indicate the presence of high-velocity outflows related to some of
these clumps. In some cases, strong molecular emission at velocities of the
quiescent gas has no detectable counterpart in the continuum. We discuss the
main features of the distribution of NH3, N2H+, and deuterated molecules. We
estimate properties of decimeter wave radio continuum sources and their
relationship with the molecular material.Comment: 21 pages, 26 figures, accepted for publication in Astrophysical
Journa
A necklace of dense cores in the high-mass star forming region G35.20-0.74N: ALMA observations
The present study aims at characterizing the massive star forming region
G35.20N, which is found associated with at least one massive outflow and
contains multiple dense cores, one of them recently found associated with a
Keplerian rotating disk. We used ALMA to observe the G35.20N region in the
continuum and line emission at 350 GHz. The observed frequency range covers
tracers of dense gas (e.g. H13CO+, C17O), molecular outflows (e.g. SiO), and
hot cores (e.g. CH3CN, CH3OH). The ALMA 870 um continuum emission map reveals
an elongated dust structure (0.15 pc long and 0.013 pc wide) perpendicular to
the large-scale molecular outflow detected in the region, and fragmented into a
number of cores with masses 1-10 Msun and sizes 1600 AU. The cores appear
regularly spaced with a separation of 0.023 pc. The emission of dense gas
tracers such as H13CO+ or C17O is extended and coincident with the dust
elongated structure. The three strongest dust cores show emission of complex
organic molecules characteristic of hot cores, with temperatures around 200 K,
and relative abundances 0.2-2x10^(-8) for CH3CN and 0.6-5x10^(-6) for CH3OH.
The two cores with highest mass (cores A and B) show coherent velocity fields,
with gradients almost aligned with the dust elongated structure. Those velocity
gradients are consistent with Keplerian disks rotating about central masses of
4-18 Msun. Perpendicular to the velocity gradients we have identified a
large-scale precessing jet/outflow associated with core B, and hints of an
east-west jet/outflow associated with core A. The elongated dust structure in
G35.20N is fragmented into a number of dense cores that may form massive stars.
Based on the velocity field of the dense gas, the orientation of the magnetic
field, and the regularly spaced fragmentation, we interpret this elongated
structure as the densest part of a 1D filament fragmenting and forming massive
stars.Comment: 24 pages, 26 figures, accepted for publication in Astronomy and
Astrophysics (abstract modified to fit arXiv restrictions
Hot high-mass accretion disk candidates
To better understand the physical properties of accretion disks in high-mass
star formation, we present a study of a 12 high-mass accretion disk candidates
observed at high spatial resolution with the Australia Telescope Compact Array
(ATCA) in the NH3 (4,4) and (5,5) lines. Almost all sources were detected in
NH3, directly associated with CH3OH Class II maser emission. From the remaining
eleven sources, six show clear signatures of rotation and/or infall motions.
These signatures vary from velocity gradients perpendicular to the outflows, to
infall signatures in absorption against ultracompact HII regions, to more
spherical infall signatures in emission. Although our spatial resolution is
~1000AU, we do not find clear Keplerian signatures in any of the sources.
Furthermore, we also do not find flattened structures. In contrast to this, in
several of the sources with rotational signatures, the spatial structure is
approximately spherical with sizes exceeding 10^4 AU, showing considerable
clumpy sub-structure at even smaller scales. This implies that on average
typical Keplerian accretion disks -- if they exist as expected -- should be
confined to regions usually smaller than 1000AU. It is likely that these disks
are fed by the larger-scale rotating envelope structure we observe here.
Furthermore, we do detect 1.25cm continuum emission in most fields of view.Comment: 21 pages, 32 figures, accepted for ApJS. A high-resolution version
can be found at http://www.mpia.de/homes/beuther/papers.htm
A ferrofluid based neural network: design of an analogue associative memory
We analyse an associative memory based on a ferrofluid, consisting of a
system of magnetic nano-particles suspended in a carrier fluid of variable
viscosity subject to patterns of magnetic fields from an array of input and
output magnetic pads. The association relies on forming patterns in the
ferrofluid during a trainingdphase, in which the magnetic dipoles are free to
move and rotate to minimize the total energy of the system. Once equilibrated
in energy for a given input-output magnetic field pattern-pair the particles
are fully or partially immobilized by cooling the carrier liquid. Thus produced
particle distributions control the memory states, which are read out
magnetically using spin-valve sensors incorporated in the output pads. The
actual memory consists of spin distributions that is dynamic in nature,
realized only in response to the input patterns that the system has been
trained for. Two training algorithms for storing multiple patterns are
investigated. Using Monte Carlo simulations of the physical system we
demonstrate that the device is capable of storing and recalling two sets of
images, each with an accuracy approaching 100%.Comment: submitted to Neural Network
- …
