3,016 research outputs found

    Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms

    Full text link
    We focus on the propagation properties of a single-cycle laser pulse through a two-level medium by numerically solving the full-wave Maxwell-Bloch equations. The counter-rotating terms in the spontaneous emission damping are included such that the equations of motion are slightly different from the conventional Bloch equations. The counter-rotating terms can considerably suppress the broadening of the pulse envelope and the decrease of the group velocity rooted from dispersion. Furthermore, for incident single-cycle pulses with envelope area 4π\pi, the time-delay of the generated soliton pulse from the main pulse depends crucially on the carrier-envelope phase of the incident pulse. This can be utilized to determine the carrier-envelope phase of the single-cycle laser pulse.Comment: 6 pages, 5 figure

    Student experiences of virtual reality - a case study in learning special relativity

    Full text link
    We present a study of student learning through the use of virtual reality. A software package is used to introduce concepts of special relativity to students in a game-like environment where users experience the effects of travelling at near light speeds. From this new perspective, space and time are significantly different to that experienced in everyday life. The study explores how students have worked with this environment and how these students have used this experience in their study of special relativity. A mixed method approach has been taken to evaluate the outcomes of separate implementations of the package at two universities. Students found the simulation to be a positive learning experience and described the subject area as being less abstract after its use. Also, students were more capable of correctly answering concept questions relating to special relativity, and a small but measurable improvement was observed in the final exam

    Understanding the dynamics of photoionization-induced solitons in gas-filled hollow-core photonic crystal fibers

    Full text link
    We present in detail our developed model [Saleh et al., Phys. Rev. Lett. 107] that governs pulse propagation in hollow-core photonic crystal fibers filled by an ionizing gas. By using perturbative methods, we find that the photoionization process induces the opposite phenomenon of the well-known Raman self-frequency red-shift of solitons in solid-core glass fibers, as was recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107]. This process is only limited by ionization losses, and leads to a constant acceleration of solitons in the time domain with a continuous blue-shift in the frequency domain. By applying the Gagnon-B\'{e}langer gauge transformation, multi-peak `inverted gravity-like' solitary waves are predicted. We also demonstrate that the pulse dynamics shows the ejection of solitons during propagation in such fibers, analogous to what happens in conventional solid-core fibers. Moreover, unconventional long-range non-local interactions between temporally distant solitons, unique of gas plasma systems, are predicted and studied. Finally, the effects of higher-order dispersion coefficients and the shock operator on the pulse dynamics are investigated, showing that the resonant radiation in the UV [Joly et al., Phys. Rev. Lett. 106] can be improved via plasma formation.Comment: 9 pages, 10 figure

    Magnetic metamaterials at telecommunication and visible frequencies

    Full text link
    Arrays of gold split-rings with 50-nm minimum feature size and with an LC resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal incidence conditions, they exhibit a pronounced fundamental magnetic mode, arising from a coupling via the electric component of the incident light. For oblique incidence, a coupling via the magnetic component is demonstrated as well. Moreover, we identify a novel higher-order magnetic resonance at around 370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique incidence. Comparison with theory delivers good agreement and also shows that the structures allow for a negative magnetic permeability.Comment: 4 pages, 3 figure

    Verifying proofs in constant depth

    Get PDF
    In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's

    A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer

    Full text link
    Prostate cancer is the most common disease in men and the second leading cause of death from cancer. Generic large imaging instruments used in cancer diagnosis have sensitivity, spatial resolution, and contrast inadequate for the task of imaging details of a small organ such as the prostate. In addition, multimodality imaging can play a significant role merging anatomical and functional details coming from simultaneous PET and MRI. Indeed, multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers from too many false positives. In order to address the above limits of the current techniques, we have proposed, built and tested, thanks to the TOPEM project funded by Italian National Institute of Nuclear Phisics a prototype of an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry, performance is dominated by a high-resolution detector placed closer to the source. The expected spatial resolution in the selected geometry is about 1.5 mm FWHM and efficiency a factor of 2 with respect to what obtained with the conventional PET scanner. In our experimental studies, we have obtained timing resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI) resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects are minimal. In addition, the matching endorectal RF coil was designed, built and tested. In the next planned studies, we expect that benefiting from the further progress in scintillator crystal surface treatment, in SiPM technology and associated electronics would allow us to significantly improve TOF resolutio

    Past Achievements and Future Challenges in 3D Photonic Metamaterials

    Full text link
    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges

    Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements

    Get PDF
    Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments
    corecore