3,016 research outputs found
Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms
We focus on the propagation properties of a single-cycle laser pulse through
a two-level medium by numerically solving the full-wave Maxwell-Bloch
equations. The counter-rotating terms in the spontaneous emission damping are
included such that the equations of motion are slightly different from the
conventional Bloch equations. The counter-rotating terms can considerably
suppress the broadening of the pulse envelope and the decrease of the group
velocity rooted from dispersion. Furthermore, for incident single-cycle pulses
with envelope area 4, the time-delay of the generated soliton pulse from
the main pulse depends crucially on the carrier-envelope phase of the incident
pulse. This can be utilized to determine the carrier-envelope phase of the
single-cycle laser pulse.Comment: 6 pages, 5 figure
Student experiences of virtual reality - a case study in learning special relativity
We present a study of student learning through the use of virtual reality. A
software package is used to introduce concepts of special relativity to
students in a game-like environment where users experience the effects of
travelling at near light speeds. From this new perspective, space and time are
significantly different to that experienced in everyday life. The study
explores how students have worked with this environment and how these students
have used this experience in their study of special relativity. A mixed method
approach has been taken to evaluate the outcomes of separate implementations of
the package at two universities. Students found the simulation to be a positive
learning experience and described the subject area as being less abstract after
its use. Also, students were more capable of correctly answering concept
questions relating to special relativity, and a small but measurable
improvement was observed in the final exam
Recommended from our members
Vertebrate Hosts as Islands: Dynamics of Selection, Immigration, Loss, Persistence, and Potential Function of Bacteria on Salamander Skin.
Skin bacterial communities can protect amphibians from a fungal pathogen; however, little is known about how these communities are maintained. We used a neutral model of community ecology to identify bacteria that are maintained on salamanders by selection or by dispersal from a bacterial reservoir (soil) and ecological drift. We found that 75% (9/12) of bacteria that were consistent with positive selection, <1% of bacteria that were consistent with random dispersal and none of the bacteria that were consistent under negative selection had a 97% or greater match to antifungal isolates. Additionally we performed an experiment where salamanders were either provided or denied a bacterial reservoir and estimated immigration and loss (emigration and local extinction) rates of bacteria on salamanders in both treatments. Loss was strongly related to bacterial richness, suggesting competition is important for structuring the community. Bacteria closely related to antifungal isolates were more likely to persist on salamanders with or without a bacterial reservoir, suggesting they had a competitive advantage. Furthermore, over-represented and under-represented operational taxonomic units (OTUs) had similar persistence on salamanders when a bacterial reservoir was present. However, under-represented OTUs were less likely to persist in the absence of a bacterial reservoir, suggesting that the over-represented and under-represented bacteria were selected against or for on salamanders through time. Our findings from the neutral model, migration and persistence analyses show that bacteria that exhibit a high similarity to antifungal isolates persist on salamanders, which likely protect hosts against pathogens and improve fitness. This research is one of the first to apply ecological theory to investigate assembly of host associated-bacterial communities, which can provide insights for probiotic bioaugmentation as a conservation strategy against disease
Understanding the dynamics of photoionization-induced solitons in gas-filled hollow-core photonic crystal fibers
We present in detail our developed model [Saleh et al., Phys. Rev. Lett. 107]
that governs pulse propagation in hollow-core photonic crystal fibers filled by
an ionizing gas. By using perturbative methods, we find that the
photoionization process induces the opposite phenomenon of the well-known Raman
self-frequency red-shift of solitons in solid-core glass fibers, as was
recently experimentally demonstrated [Hoelzer et al., Phys. Rev. Lett. 107].
This process is only limited by ionization losses, and leads to a constant
acceleration of solitons in the time domain with a continuous blue-shift in the
frequency domain. By applying the Gagnon-B\'{e}langer gauge transformation,
multi-peak `inverted gravity-like' solitary waves are predicted. We also
demonstrate that the pulse dynamics shows the ejection of solitons during
propagation in such fibers, analogous to what happens in conventional
solid-core fibers. Moreover, unconventional long-range non-local interactions
between temporally distant solitons, unique of gas plasma systems, are
predicted and studied. Finally, the effects of higher-order dispersion
coefficients and the shock operator on the pulse dynamics are investigated,
showing that the resonant radiation in the UV [Joly et al., Phys. Rev. Lett.
106] can be improved via plasma formation.Comment: 9 pages, 10 figure
Magnetic metamaterials at telecommunication and visible frequencies
Arrays of gold split-rings with 50-nm minimum feature size and with an LC
resonance at 200-THz frequency (1500-nm wavelength) are fabricated. For normal
incidence conditions, they exhibit a pronounced fundamental magnetic mode,
arising from a coupling via the electric component of the incident light. For
oblique incidence, a coupling via the magnetic component is demonstrated as
well. Moreover, we identify a novel higher-order magnetic resonance at around
370 THz (800-nm wavelength) that evolves out of the Mie resonance for oblique
incidence. Comparison with theory delivers good agreement and also shows that
the structures allow for a negative magnetic permeability.Comment: 4 pages, 3 figure
Formation of new microdistricts area within the sanitary protection zone of the Tomsk underground water intake
Verifying proofs in constant depth
In this paper we initiate the study of proof systems where verification of proofs proceeds by NC circuits. We investigate the question which languages admit proof systems in this very restricted model. Formulated alternatively, we ask which languages can be enumerated by NC functions. Our results show that the answer to this problem is not determined by the complexity of the language. On the one hand, we construct NC proof systems for a variety of languages ranging from regular to NP-complete. On the other hand, we show by combinatorial methods that even easy regular languages such as Exact-OR do not admit NC proof systems. We also present a general construction of proof systems for regular languages with strongly connected NFA's
A novel TOF-PET MRI detector for diagnosis and follow up of the prostate cancer
Prostate cancer is the most common disease in men and the second leading
cause of death from cancer. Generic large imaging instruments used in cancer
diagnosis have sensitivity, spatial resolution, and contrast inadequate for the
task of imaging details of a small organ such as the prostate. In addition,
multimodality imaging can play a significant role merging anatomical and
functional details coming from simultaneous PET and MRI. Indeed,
multi-parametric PET/MRI was demonstrated to improve diagnosis, but it suffers
from too many false positives. In order to address the above limits of the
current techniques, we have proposed, built and tested, thanks to the TOPEM
project funded by Italian National Institute of Nuclear Phisics a prototype of
an endorectal PET-TOF/MRI probe. In the applied magnification PET geometry,
performance is dominated by a high-resolution detector placed closer to the
source. The expected spatial resolution in the selected geometry is about 1.5
mm FWHM and efficiency a factor of 2 with respect to what obtained with the
conventional PET scanner. In our experimental studies, we have obtained timing
resolution of ~ 320 ps FWHM and at the same time Depth of Interaction (DOI)
resolution of under 1 mm. Tests also showed that mutual adverse PET-MR effects
are minimal. In addition, the matching endorectal RF coil was designed, built
and tested. In the next planned studies, we expect that benefiting from the
further progress in scintillator crystal surface treatment, in SiPM technology
and associated electronics would allow us to significantly improve TOF
resolutio
Past Achievements and Future Challenges in 3D Photonic Metamaterials
Photonic metamaterials are man-made structures composed of tailored micro- or
nanostructured metallo-dielectric sub-wavelength building blocks that are
densely packed into an effective material. This deceptively simple, yet
powerful, truly revolutionary concept allows for achieving novel, unusual, and
sometimes even unheard-of optical properties, such as magnetism at optical
frequencies, negative refractive indices, large positive refractive indices,
zero reflection via impedance matching, perfect absorption, giant circular
dichroism, or enhanced nonlinear optical properties. Possible applications of
metamaterials comprise ultrahigh-resolution imaging systems, compact
polarization optics, and cloaking devices. This review describes the
experimental progress recently made fabricating three-dimensional metamaterial
structures and discusses some remaining future challenges
Intercomparison of Hantzsch and fiber-laser-induced-fluorescence formaldehyde measurements
Two gas-phase formaldehyde (HCHO) measurement techniques, a modified commercial wet-chemical instrument based on Hantzsch fluorimetry and a custom-built instrument based on fiber laser-induced fluorescence (FILIF), were deployed at the atmospheric simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) to compare the instruments' performances under a range of conditions. Thermolysis of para-HCHO and ozonolysis of 1-butene were used as HCHO sources, allowing for calculations of theoretical HCHO mixing ratios. Calculated HCHO mixing ratios are compared to measurements, and the two measurements are also compared. Experiments were repeated under dry and humid conditions (RH 60%) to investigate the possibility of a water artifact in the FILIF measurements. The ozonolysis of 1-butene also allowed for the investigation of an ozone artifact seen in some Hantzsch measurements in previous intercomparisons. Results show that under all conditions the two techniques are well correlated (R2 ≥ 0.997), and linear regression statistics show measurements agree with within stated uncertainty (15% FILIF + 5% Hantzsch). No water or ozone artifacts are identified. While a slight curvature is observed in some Hantzsch vs. FILIF regressions, the potential for variable instrument sensitivity cannot be attributed to a single instrument at this time. Measurements at low concentrations highlight the need for a secondary method for testing the purity of air used in instrument zeroing and the need for further FILIF White cell outgassing experiments
- …
