632 research outputs found

    Storage and retrieval of continuous-variable polarization-entangled cluster states in atomic ensembles

    Full text link
    We present a proposal for storing and retrieving a continuous-variable quadripartite polarization-entangled cluster state, using macroscopic atomic ensembles in a magnetic field. The Larmor precession of the atomic spins leads to a symmetry between the atomic canonical operators. In this scheme, each of the four spatially separated pulses passes twice through the respective ensemble in order to map the polarization-entangled cluster state onto the long-lived atomic ensembles. The stored state can then be retrieved by another four read-out pulses, each crossing the respective ensemble twice. By calculating the variances, we analyzed the fidelities of the storage and retrieval, and our scheme is feasible under realistic experimental conditions.Comment: 6 pages, 4 figure

    Phase Diagram of Rydberg atoms in a nonequilibrium optical lattice

    Full text link
    We study the quantum nonequilibrium dynamics of ultracold three-level atoms trapped in an optical lattice, which are excited to their Rydberg states via a two-photon excitation with nonnegligible spontaneous emission. Rich quantum phases including uniform phase, antiferromagnetic phase and oscillatory phase are identified. We map out the phase diagram and find these phases can be controlled by adjusting the ratio of intensity of the pump light to the control light, and that of two-photon detuning to the Rydberg interaction strength. When the two-photon detuning is blue-shifted and the latter ratio is less than 1, bistability exists among the phases. Actually, this ratio controls the Rydberg-blockade and antiblockade effect, thus the phase transition in this system can be considered as a possible approach to study both effects.Comment: 5 pages,5 figure

    Information filtering via preferential diffusion

    Get PDF
    Recommender systems have shown great potential to address information overload problem, namely to help users in finding interesting and relevant objects within a huge information space. Some physical dynamics, including heat conduction process and mass or energy diffusion on networks, have recently found applications in personalized recommendation. Most of the previous studies focus overwhelmingly on recommendation accuracy as the only important factor, while overlook the significance of diversity and novelty which indeed provide the vitality of the system. In this paper, we propose a recommendation algorithm based on the preferential diffusion process on user-object bipartite network. Numerical analyses on two benchmark datasets, MovieLens and Netflix, indicate that our method outperforms the state-of-the-art methods. Specifically, it can not only provide more accurate recommendations, but also generate more diverse and novel recommendations by accurately recommending unpopular objects.Comment: 12 pages, 10 figures, 2 table

    Geometric quantization of Hamiltonian actions of Lie algebroids and Lie groupoids

    Get PDF
    We construct Hermitian representations of Lie algebroids and associated unitary representations of Lie groupoids by a geometric quantization procedure. For this purpose we introduce a new notion of Hamiltonian Lie algebroid actions. The first step of our procedure consists of the construction of a prequantization line bundle. Next, we discuss a version of K\"{a}hler quantization suitable for this setting. We proceed by defining a Marsden-Weinstein quotient for our setting and prove a ``quantization commutes with reduction'' theorem. We explain how our geometric quantization procedure relates to a possible orbit method for Lie groupoids. Our theory encompasses the geometric quantization of symplectic manifolds, Hamiltonian Lie algebra actions, actions of families of Lie groups, foliations, as well as some general constructions from differential geometry.Comment: 40 pages, corrected version 11-01-200

    Ferromagnetism in a lattice of Bose condensates

    Full text link
    We show that an ensemble of spinor Bose-Einstein condensates confined in a one dimensional optical lattice can undergo a ferromagnetic phase transition and spontaneous magnetization arises due to the magnetic dipole-dipole interaction. This phenomenon is analogous to ferromagnetism in solid state physics, but occurs with bosons instead of fermions.Comment: 4 pages, 2 figure

    Fragmented Condensate Ground State of Trapped Weakly Interacting Bosons in Two Dimensions

    Full text link
    The ground state and its structure for a rotating, harmonically trapped N-Boson system with a weak repulsive contact interaction are studied as the angular momentum L increases up to 3N. We show that the ground state is generally a fragmented condensate due to angular momentum conservation. In response to an (arbitrarily weak) asymmetric perturbation of the trap, however, the fragmented ground state can be transformed into a single condensate state. We manifest this intrinsic instability by calculating the conditional probability distributions, which show patterns analogous to the boson density distributions predicted by mean-field theory.Comment: 4 pages, 4 ps figure

    Photonic band gaps and defect states induced by excitations of Bose-Einstein condensates in optical lattices

    Full text link
    We study the interaction of a Bose-Einstein condensate, which is confined in an optical lattice, with a largely detuned light field propagating through the condensate. If the condensate is in its ground state it acts as a periodic dielectric and gives rise to photonic band gaps at optical frequencies. The band structure of the combined system of condensed lattice-atoms and photons is studied by using the concept of polaritons. If elementary excitations of the condensate are present, they will produce defect states inside the photonic band gaps. The frequency of localized defect states is calculated using the Koster-Slater model.Comment: 10 pages, 1 figure, RevTe

    Erythropoietin: A potent inducer of peripheral immuno/inflammatory modulation in autoimmune EAE

    Get PDF
    Background: Beneficial effects of short-term erythropoietin (EPO) theraphy have been demonstrated in several animal models of acute neurologic injury, including experimental autoimmune encephalomyelitis(EAE)-the animal model of multiple sclerosis. We have found that EPO treatment substantially reduces the acute clinical paralysis seen EAE mice and this improvements is accompanied by a large reduction in the mononuclear cell infiltration and downregulation of glial MHC class II expression within the inflamed CNS. Other reports have recently indicated that peripherally generated anti-inflammatory CD4 +Foxp3 3 regulatory T cells (Tregs) and the IL17-producing CD4+ T helper cell (Th17) subpopulations play key antagonistic roles in EAE pathogenesis. However, no information regardind the effects of EPO theraphy on the behavior of the general mononuclear-lymphocyte population, Tregs or Th17 cells in EAE has emerged. Methods and Findings: We first determined in vivo that EPO theraphy markedly suppressed MOG specific T cell proliferation and sharply reduced the number of reactive dendritic cells (CD11c positive) in EAE lumph modes during both inductive and later symptomatic phases of MOG 35-55 induced EAE. We then determined the effect in vivo of EPO on numbers of peripheral Treg cells and Th17 cells. We found that EPO treatment modulated immune balance in both the periphery and the inflamed spinal cord by promoting a large expansion in Treg cells, inhibiting Th17 polarization and abrogating proliferation of the antigen presenting dendritic cell population. Finally we utilized tissue culture assays to show that exposure to EPO in vitro similarly downregulated MOG-specific T cell proliferation and also greatly suppressed T cell production of pro-inflammatory cytokines. Conclusions: Taken together, our findings reveal an important new locus whereby EPO induces substantial long-term tissue protection in the host through signalling to several critical subsets of immune cells that reside in the peripheral lymphatic system.published_or_final_versio
    corecore