4,506 research outputs found
Robust unravelings for resonance fluorescence
Monitoring the fluorescent radiation of an atom unravels the master equation
evolution by collapsing the atomic state into a pure state which evolves
stochastically. A robust unraveling is one that gives pure states that, on
average, are relatively unaffected by the master equation evolution (which
applies once the monitoring ceases). The ensemble of pure states arising from
the maximally robust unraveling has been suggested to be the most natural way
of representing the system [H.M. Wiseman and J.A. Vaccaro, Phys. Lett. A {\bf
250}, 241 (1998)]. We find that the maximally robust unraveling of a resonantly
driven atom requires an adaptive interferometric measurement proposed by
Wiseman and Toombes [Phys. Rev. A {\bf 60}, 2474 (1999)]. The resultant
ensemble consists of just two pure states which, in the high driving limit, are
close to the eigenstates of the driving Hamiltonian . This
ensemble is the closest thing to a classical limit for a strongly driven atom.
We also find that it is possible to reasonably approximate this ensemble using
just homodyne detection, an example of a continuous Markovian unraveling. This
has implications for other systems, for which it may be necessary in practice
to consider only continuous Markovian unravelings.Comment: 12 pages including 5 .eps figures, plus one .jpg figur
Atom Lasers, Coherent States, and Coherence:II. Maximally Robust Ensembles of Pure States
As discussed in Wiseman and Vaccaro [quant-ph/9906125], the stationary state
of an optical or atom laser far above threshold is a mixture of coherent field
states with random phase, or, equivalently, a Poissonian mixture of number
states. We are interested in which, if either, of these descriptions of
, is more natural. In the preceding paper we concentrated upon
whether descriptions such as these are physically realizable (PR). In this
paper we investigate another relevant aspect of these ensembles, their
robustness. A robust ensemble is one for which the pure states that comprise it
survive relatively unchanged for a long time under the system evolution. We
determine numerically the most robust ensembles as a function of the parameters
in the laser model: the self-energy of the bosons in the laser mode, and
the excess phase noise . We find that these most robust ensembles are PR
ensembles, or similar to PR ensembles, for all values of these parameters. In
the ideal laser limit (), the most robust states are coherent
states. As the phase noise or phase dispersion is increased, the
most robust states become increasingly amplitude-squeezed. We find scaling laws
for these states. As the phase diffusion or dispersion becomes so large that
the laser output is no longer quantum coherent, the most robust states become
so squeezed that they cease to have a well-defined coherent amplitude. That is,
the quantum coherence of the laser output is manifest in the most robust PR
states having a well-defined coherent amplitude. This lends support to the idea
that robust PR ensembles are the most natural description of the state of the
laser mode. It also has interesting implications for atom lasers in particular,
for which phase dispersion due to self-interactions is expected to be large.Comment: 16 pages, 9 figures included. To be published in Phys. Rev. A, as
Part II of a two-part paper. The original version of quant-ph/9906125 is
shortly to be replaced by a new version which is Part I of the two-part
paper. This paper (Part II) also contains some material from the original
version of quant-ph/990612
Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas
Wild type cells of the green alga Chlamydomonas reinhardtii can grow in the in the dark by taking up and respiring exogenously supplied acetate. Obligate photoautotrophic (dark dier, dk) mutants of this alga have been selected which grow at near wild type rates in the light, but rapidly die when transferred to darkness because of defects in mitochondrial structure and function. In crosses of the dk mutants to wild type, the majority of the mutants are inherited in a mendelian fashion, although two have been isolated which are inherited in a clearly nonmendelian fashion. Nine mendelian dk mutants have been analyzed in detail, and belong to eight different complementation groups representing eight gene loci. These mutants have been tentatively grouped into three classes on the basis of the pleiotropic nature of their phenotypic defects. Mutants in Class I have gross alterations in the ultrastructure of their mitochondrial inner membranes together with deficiencies in cytochrome oxidase and antimycin/rotenone-sensitive NADH-cytochrome c reductase activities. Mutants in Class II have a variety of less severe alterations in mitochondrial ultrastructure and deficiencies in cytochrome oxidase activity. Mutants in Class III have normal or near normal mitochondrial ultrastructure and reduced cytochrome oxidase activity. Eight of the nine mutants show corresponding reductions in cyanide-sensitive respiration
Retroactive quantum jumps in a strongly-coupled atom-field system
We investigate a novel type of conditional dynamic that occurs in the
strongly-driven Jaynes-Cummings model with dissipation. Extending the work of
Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined
numerical and analytic study of the Stochastic Master Equation that describes
the system's conditional evolution when the cavity output is continuously
observed via homodyne detection, but atomic spontaneous emission is not
monitored at all. We find that quantum jumps of the atomic state are induced by
its dynamical coupling to the optical field, in order retroactively to justify
atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure
In-loop squeezing is real squeezing to an in-loop atom
Electro-optical feedback can produce an in-loop photocurrent with arbitrarily
low noise. This is not regarded as evidence of `real' squeezing because
squeezed light cannot be extracted from the loop using a linear beam splitter.
Here I show that illuminating an atom (which is a nonlinear optical element)
with `in-loop' squeezed light causes line-narrowing of one quadrature of the
atom's fluorescence. This has long been regarded as an effect which can only be
produced by squeezing. Experiments on atoms using in-loop squeezing should be
much easier than those with conventional sources of squeezed light.Comment: 4 pages, 2 figures, submitted to PR
Singular Instantons Made Regular
The singularity present in cosmological instantons of the Hawking-Turok type
is resolved by a conformal transformation, where the conformal factor has a
linear zero of codimension one. We show that if the underlying regular manifold
is taken to have the topology of , and the conformal factor is taken to
be a twisted field so that the zero is enforced, then one obtains a
one-parameter family of solutions of the classical field equations, where the
minimal action solution has the conformal zero located on a minimal volume
noncontractible submanifold. For instantons with two singularities, the
corresponding topology is that of a cylinder with D=4
analogues of `cross-caps' at each of the endpoints.Comment: 23 pages, compressed and RevTex file, including nine postscript
figure files. Submitted versio
Quantum feedback control of a solid-state qubit
We have studied theoretically the basic operation of a quantum feedback loop
designed to maintain a desired phase of quantum coherent oscillations in a
single solid-state qubit. The degree of oscillations synchronization with
external harmonic signal is calculated as a function of feedback strength,
taking into account available bandwidth and coupling to environment.
The feedback can efficiently suppress the dephasing of oscillations if the
qubit coupling to the detector is stronger than coupling to environment.Comment: Extended version of cond-mat/0107280 (5 pages, 5 figures); to be
published in PRB (RC
Atom laser coherence and its control via feedback
We present a quantum-mechanical treatment of the coherence properties of a
single-mode atom laser. Specifically, we focus on the quantum phase noise of
the atomic field as expressed by the first-order coherence function, for which
we derive analytical expressions in various regimes. The decay of this function
is characterized by the coherence time, or its reciprocal, the linewidth. A
crucial contributor to the linewidth is the collisional interaction of the
atoms. We find four distinct regimes for the linewidth with increasing
interaction strength. These range from the standard laser linewidth, through
quadratic and linear regimes, to another constant regime due to quantum
revivals of the coherence function. The laser output is only coherent (Bose
degenerate) up to the linear regime. However, we show that application of a
quantum nondemolition measurement and feedback scheme will increase, by many
orders of magnitude, the range of interaction strengths for which it remains
coherent.Comment: 15 pages, 6 figures, revtex
Quantum Trajectories and Quantum Measurement Theory
Beyond their use as numerical tools, quantum trajectories can be ascribed a
degree of reality in terms of quantum measurement theory. In fact, they arise
naturally from considering continuous observation of a damped quantum system. A
particularly useful form of quantum trajectories is as linear (but non-unitary)
stochastic Schrodinger equations. In the limit where a strong local oscillator
is used in the detection, and where the system is not driven, these quantum
trajectories can be solved. This gives an alternate derivation of the
probability distributions for completed homodyne and heterodyne detection
schemes. It also allows the previously intractable problem of real-time
adaptive measurements to be treated. The results for an analytically soluble
example of adaptive phase measurements are presented, and future developments
discussed.Comment: 17 pages. A review article publihsed in 1996 which has been picking
up some citations, so I thought I would post it her
Targeting qubit states using open-loop control
We present an open-loop (bang-bang) scheme which drives an open two-level
quantum system to any target state, while maintaining quantum coherence
throughout the process. The control is illustrated by a realistic simulation
for both adiabatic and thermal decoherence. In the thermal decoherence regime,
the control achieved by the proposed scheme is qualitatively similar, at the
ensemble level, to the control realized by the quantum feedback scheme of Wang,
Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous
emission of a two-level atom. The performance of the open-loop scheme compares
favorably against the quantum feedback scheme with respect to robustness,
target fidelity and transition times.Comment: 27 pages, 7 figure
- …
