1,523 research outputs found
Ariel 6 measurements of ultra-heavy cosmic ray fluxes in the region 34 or = Z or = 48
The Ariel VI satellite was launched by NASA on a Scout rocket on 3rd June 1979 from Wallops Island, Virginia, USA, into a near circular 625 km orbit inclined at 55 deg. It carried a spherical cosmic ray detector designed by a group from Bristol University. A spherical aluminum vessel of diameter 75 cm contains a gas scintillation mixture and a thin spherical shell of Pilot 425 plastic, and forms a single optical cavity viewed by 16 photomultipliers. Particle tracks through the detector may be characterized by their impact parameter p and by whether or not they pass through the cup of plastic scintillator placed between the sphere and the spacecraft body (referred to below as the Anti-Coincidence Detector or ACD). Individual particle charges are determined by separately measuring the gas scintillation and the Cerenkov emission from the plastic shell. This is possible because of the quite different distribution in time of these emissions
Progressive refinement rendering of implicit surfaces
The visualisation of implicit surfaces can be an inefficient task when such surfaces are complex and highly detailed. Visualising a surface by first converting it to a
polygon mesh may lead to an excessive polygon count. Visualising a surface by direct ray casting is often a slow procedure. In this paper we present a progressive refinement renderer for implicit surfaces that are Lipschitz continuous. The renderer first displays a low resolution estimate of what the final image is going to be and, as the computation progresses, increases the quality of this estimate at an interactive frame rate. This renderer provides a quick previewing facility that significantly reduces the design cycle of a new and complex implicit surface. The renderer is also capable of completing an image faster than a conventional implicit surface rendering algorithm based on ray casting
A brown dwarf desert for intermediate mass stars in Sco OB2?
We present JHK observations of 22 intermediate-mass stars in Sco OB2,
obtained with VLT/NACO. The survey was performed to determine the status of
(sub)stellar candidate companions of A and late-B members. The distinction
between companions and background stars is by a comparison with isochrones and
statistical arguments. We are sensitive to companions in the separation range
0.1''-11'' (13-1430 AU) and K<17. We detect 62 secondaries of which 18 are
physical companions (3 new), 11 candidates, and 33 background stars. The
companion masses are in the range 0.03<M<1.19 Msun, with mass ratios
0.06<q<0.55. We include in our sample a subset of 9 targets with multi-color
ADONIS observations from Kouwenhoven et al. (2005). In the ADONIS survey
secondaries with K12 as
background stars. Our multi-color analysis demonstrates that the simple K=12
criterion correctly classifies the secondaries in ~80% of the cases. We
reanalyse the total ADONIS/NACO sample and conclude that of the 176
secondaries, 25 are physical companions, 55 are candidates, and 96 are
background stars. Although we are sensitive and complete to brown dwarfs as
faint as K=14 in the separation range 130-520 AU, we detect only one, giving a
brown dwarf companion fraction of 0.5% (M>30 MJ). However, the number of brown
dwarfs is consistent with an extrapolation of the stellar companion mass
distribution. This indicates that the physical mechanism for the formation of
brown dwarfs around intermediate mass stars is similar to that of stellar
companions, and that the embryo ejection mechanism does not need to be invoked
in order to explain the small number of brown dwarf companions among these
stars.Comment: 29 pages, 9 figures, accepted by A&
Competing English, Spanish, and French alabaster trade in Europe over five centuries as evidenced by isotope fingerprinting
A lack of written sources is a serious obstacle in the reconstruction of the medieval trade of art and art materials, and in the identification of artists, workshop locations, and trade routes. We use the isotopes of sulfur, oxygen, and strontium (S, O, Sr) present in gypsum alabaster to unambiguously link ancient European source quarries and areas to alabaster artworks produced over five centuries (12th–17th) held by the Louvre museum in Paris and other European and American collections. Three principal alabaster production areas are identified, in central England, northern Spain, and a major, long-lived but little-documented alabaster trade radiating from the French Alps. The related trade routes are mostly fluvial, although terrestrial transport crossing the major river basin borders is also confirmed by historical sources. Our study also identifies recent artwork restoration using Italian alabaster and provides a robust geochemical framework for provenancing, including recognition of restoration and forgeries
The primordial binary population II: Recovering the binary population for intermediate mass stars in Sco OB2
We characterize the binary population in the young and nearby OB association
Scorpius OB2 using available observations of visual, spectroscopic, and
astrometric binaries with intermediate-mass primaries. We take into account
observational biases by comparing the observations with simulated observations
of model associations. The available data indicate a large binary fraction (>
70% with 3sigma confidence), with a large probability that all intermediate
mass stars in Sco OB2 are part of a binary system. The binary systems have a
mass ratio distribution of the form f(q) ~ q^-0.4. Sco OB2 has a semi-major
axis distribution of the form f(log a) ~ constant (Opik's law), in the range
5-5e6 Rsun. The log-normal period distribution of Duquennoy & Mayor results in
too few spectroscopic binaries, even if the model binary fraction is 100%. Sco
OB2 is a young association with a low stellar density; its current population
is expected to be very similar to the primordial population. The fact that
practically all stars in Sco OB2 are part of a binary (or multiple) system
demonstrates that multiplicity is a fundamental factor in the star formation
process, at least for intermediate mass stars.Comment: 36 pages, 11 figures, accepted by A&
Their Farm, Your Table: Sustainability of Small Farms in the Willamette Valley
Whether walking down a grocery aisle or strolling through a farmer’s market, everybody eats, which means everybody shops. Oregon’s Willamette Valley is thick with small farms that grow everything from raspberries to rutabaga, but is locally grown produce worth the hype? Despite this rich agricultural area, many people lack knowledge about the importance of local farms, the ways they operate, and how they can be supported. This project explores what it means to farm small, and whether being small is the same as being environmentally friendly and sustainable long-term. Along with research contrasting conventional, organic, and sustainable farming techniques there are editorials on three local farms, and a handful of recipes that can be made using their produce
The Gaia-ESO Survey: Detailed Abundances in the Metal-poor Globular Cluster NGC 4372
We present the abundance analysis for a sample of 7 red giant branch stars in
the metal-poor globular cluster NGC 4372 based on UVES spectra acquired as part
of the Gaia-ESO Survey. This is the first extensive study of this cluster from
high resolution spectroscopy. We derive abundances of O, Na, Mg, Al, Si, Ca,
Sc, Ti, Fe, Cr, Ni, Y, Ba, and La. We find a metallicity of [Fe/H] = -2.19
0.03 and find no evidence for a metallicity spread. This metallicity
makes NGC 4372 one of the most metal-poor galactic globular clusters. We also
find an {\alpha}-enhancement typical of halo globular clusters at this
metallicity. Significant spreads are observed in the abundances of light
elements. In particular we find a Na-O anti-correlation. Abundances of O are
relatively high compared with other globular clusters. This could indicate that
NGC 4372 was formed in an environment with high O for its metallicity. A Mg-Al
spread is also present which spans a range of more than 0.5 dex in Al
abundances. Na is correlated with Al and Mg abundances at a lower significance
level. This pattern suggests that the Mg-Al burning cycle is active. This
behavior can also be seen in giant stars of other massive, metal-poor clusters.
A relation between light and heavy s-process elements has been identified.Comment: 14 pages, 14 figures, accepted for publication in A&
First Dark Matter Limits from a Large-Mass, Low-Background Superheated Droplet Detector
We report on the fabrication aspects and calibration of the first large
active mass ( g) modules of SIMPLE, a search for particle dark matter
using Superheated Droplet Detectors (SDDs). While still limited by the
statistical uncertainty of the small data sample on hand, the first weeks of
operation in the new underground laboratory of Rustrel-Pays d'Apt already
provide a sensitivity to axially-coupled Weakly Interacting Massive Particles
(WIMPs) competitive with leading experiments, confirming SDDs as a convenient,
low-cost alternative for WIMP detection.Comment: Final version, Phys. Rev. Lett. (in press
The Primordial Binary Population - I: A near-infrared adaptive optics search for close visual companions to A star members of Scorpius OB2
We present the results of a near-infrared adaptive optics survey with the aim
to detect close companions to Hipparcos members in the three subgroups of the
nearby OB association Sco OB2: Upper Scorpius (US), Upper Centaurus Lupus (UCL)
and Lower Centaurus Crux (LCC). We have targeted 199 A-type and late B-type
stars in the Ks band, and a subset also in the J and H band. We find 151
stellar components other than the target stars. A brightness criterion is used
to separate these components into 77 background stars and 74 candidate physical
companion stars. Out of these 74 candidate companions, 41 have not been
reported before (14 in US; 13 in UCL; 14 in LCC). Companion star masses range
from 0.1 to 3 Msun. The mass ratio distribution follows f(q) = q^-0.33, which
excludes random pairing. No close (rho < 3.75'') companion stars or background
stars are found in the magnitude range 12 < Ks < 14. The lack of stars with
these properties cannot be explained by low-number statistics, and may imply a
lower limit on the companion mass of ~ 0.1 Msun. Close stellar components with
Ks > 14 are observed. If these components are very low-mass companion stars, a
gap in the companion mass distribution might be present. The small number of
close low-mass companion stars could support the embryo-ejection formation
scenario for brown dwarfs. Our findings are compared with and complementary to
visual, spectroscopic, and astrometric data on binarity in Sco OB2. We find an
overall companion star fraction of 0.52 in this association. This paper is the
first step toward our goal to derive the primordial binary population in Sco
OB2.Comment: 27 pages, to accepted by A&
The Gaia -ESO Survey : Empirical determination of the precision of stellar radial velocities and projected rotation velocities
Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims. A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (v sin i) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods. We present an analysis to empirically quantify the size and distribution of uncertainties in RV and v sin i using spectra from repeated exposures of the same stars. Results. We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and v sin i, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions. Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the v sin i precision for stars in young clusters, as a function of S/N, v sin i and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 kms-1, dependent on instrumental configuration.Peer reviewedFinal Accepted Versio
- …
