71,187 research outputs found

    Collisionless relaxation in non-neutral plasmas

    Get PDF
    A theoretical framework is presented which allows to quantitatively predict the final stationary state achieved by a non-neutral plasma during a process of collisionless relaxation. As a specific application, the theory is used to study relaxation of charged-particles beams. It is shown that a fully matched beam relaxes to the Lynden-Bell distribution. However, when a mismatch is present and the beam oscillates, parametric resonances lead to a core-halo phase separation. The approach developed accounts for both the density and the velocity distributions in the final stationary state.Comment: Accepted in Phys. Rev. Let

    Characterizing Uncertainty in Air Pollution Damage Estimates

    Get PDF
    This study uses Monte Carlo methods to characterize the uncertainty associated with per-ton damage estimates for 100 power plants in the contiguous United States (U.S.) This analysis focuses on damage estimates produced by an Integrated Assessment Model (IAM) for emissions of two local air pollutants: sulfur dioxide (SO2) and .ne particulate matter (PM2:5). For each power plant, the Monte Carlo procedure yields an empirical distribution for the damage per ton of SO2 and PM2:5:For a power plant in New York, one ton of SO2 produces 5,160indamageswitha905,160 in damages with a 90% percentile interval between 1,000 and 14,090.AtonofPM2:5emittedfromthesamefacilitycauses14,090. A ton of PM2:5 emitted from the same facility causes 17,790 worth of damages with a 90% percentile interval of 3,780and3,780 and 47,930. Results for the sample of 100 fossil-fuel .red power plants shows a strong spatial pattern in the marginal damage distributions. The degree of variability increases by plant location from east to west. This result highlights the importance of capturing uncertainty in air quality modeling in the empirical marginal damage distributions. Further, by isolating uncertainty at each module in the IAM we .nd that uncertainty associated with the dose-response parameter, which captures the in.uence of exposure to PM2:5 on adult mortality rates, the mortality valuation parameter, and the air quality model exert the greatest in.uence on cumulative uncertainty. The paper also demonstrates how the marginal damage distributions may be used to guide regulators in the design of more efficient market-based air pollution policy in the U.S.Monte Carlo, Air Pollution, Market-based Pollution Policy

    Donnan equilibrium and the osmotic pressure of charged colloidal lattices

    Full text link
    We consider a system composed of a monodisperse charge-stabilized colloidal suspension in the presence of monovalent salt, separated from the pure electrolyte by a semipermeable membrane, which allows the crossing of solvent, counterions, and salt particles, but prevents the passage of polyions. The colloidal suspension, that is in a crystalline phase, is considered using a spherical Wigner-Seitz cell. After the Donnan equilibrium is achieved, there will be a difference in pressure between the two sides of the membrane. Using the functional density theory, we obtained the expression for the osmotic pressure as a function of the concentration of added salt, the colloidal volume fraction, and the size and charge of the colloidal particles. The results are compared with the experimental measurements for ordered polystyrene lattices of two different particle sizes over a range of ionic strengths and colloidal volume fractions.Comment: 8 pages, 4 Postscript figures, uses multicol.sty, to be published in European Physical Journal

    Elimination of IR/UV via Gravity in Noncommutative Field Theory

    Full text link
    Models of particle physics with Noncommutative Geometry (NCG) generally suffer from a manifestly non-Wilsonian coupling of infrared and ultraviolet degrees of freedom known as the "IR/UV Problem" which would tend to compromise their phenomenological relevance. In this Letter we explicitly show how one may remedy this by coupling NCG to gravity. In the simplest scenario the Lagrangian gets multiplied by a nonconstant background metric; in ϕ4\phi-4 theory the theorem that d4xϕϕ=d4xϕ2\int d^4 x \phi \star \phi = \int d^4 x \phi^2 is no longer true and the field propagator gets modified by a factor which depends on both NCG and the variation of the metric. A suitable limit of this factor as the propagating momentum gets asymptotically large then eradicates the IR/UV problem. With gravity and NCG coupled to each other, one might expect anti-symmetric components to arise in the metric. Cosmological implications of such are subsequently discussed.Comment: 6 pages; MPLA versio
    corecore