176 research outputs found

    Clinical relevance of biomarkers of oxidative stress

    Get PDF
    SIGNIFICANCE Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance. CRITICAL ISSUES The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use. FUTURE DIRECTIONS Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 00, 000-000

    Zeolite structures loading with an anticancer compound as drug delivery systems

    Get PDF
    The authors are thankful to Dr. A. S. Azevedo for collecting the powder diffraction data.Two different structures of zeolites, faujasite (FAU) and Linde type A (LTA), were studied to investigate their suitability for drug delivery systems (DDS). The zeolites in the sodium form (NaY and NaA) were used as hosts for encapsulation of α-cyano-4- hydroxycinnamic acid (CHC). CHC, an experimental anticancer drug, was encapsulated in both zeolites by diffusion in liquid phase. These new drug delivery systems, CHC@zeolite, were characterized by spectroscopic techniques (FTIR, 1H NMR, 13C and 27Al solidstate MAS NMR, and UV−vis), chemical analysis, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect of the zeolites and CHC@zeolite drug deliveries on HCT-15 human colon carcinoma cell line viability was evaluated. Both zeolites alone revealed no toxicity to HCT-15 cancer cells. Importantly, CHC@zeolite exhibit an inhibition of cell viability up to 585-fold, when compared to the non-encapsulated drug. These results indicate the potential of the zeolites for drug loading and delivery into cancer cells to induce cell deathO.M. and R.A. are recipients of fellowships (SFRH/BD/36463/2007, SFRH/BI/51118/2010) from Fundação para a Ciência e a Tecnologia (FCT, Portugal). This work was supported by the FCT projects refs PEst-C/ QUI/UI0686/2011, PEst-C/CTM/LA0011/2011, and PTDC/ SAU-FCF/104347/2008, under the scope of “Programa Operacional Temático Factores de Competitividade” (COMPETE) of “Quadro Comunitário de Apoio III” and cofinanced by Fundo Comunitário Europeu FEDER, and the Centre of Chemistry and Life and Health Sciences Research Institute (University of Minho, Portugal)

    Natural zeolite (chabazite/phillipsite) dietary supplementation influences faecal microbiota and oxidant status of working dogs

    Get PDF
    We evaluated whether chabazite/phillipsite dietary supplementation might affect the faecal microbiota, oxidant and antioxidant status of working dogs at rest undergone to a trial test. Forty English Setter dogs were involved in two replicate trials. At each replicate, dogs were divided into two homogeneous groups (10 dogs/group). During a period of 28 days, diet was supplemented (Z group) or not supplemented (C group) with chabazite/phillipsite at the dose of 5 g/head/day. On day 29, dogs were subjected to a trial test. Faecal characteristics were assessed at 0 and 29 days (within two hours from the end of the trial test). Faecal consistency was not affected by dietary supplementation (p > .05). On day 29, Lactobacillus spp. and Enterococcus spp. counts were higher and Enterobacteriaceae were lower in Z than in C group (p  .05). Our results suggest that chabazite/phillipsite dietary supplementation, improves the intestinal microbiota ecosystem and may counteract the oxidative damage caused by physical stress in hunting dogs at the beginning of the working season

    Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation

    Get PDF
    Advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs) have a pathogenetic role in the development and progression of different oxidative-based diseases including diabetes, atherosclerosis, and neurological disorders. AGEs and ALEs represent a quite complex class of compounds that are formed by different mechanisms, by heterogeneous precursors and that can be formed either exogenously or endogenously. There is a wide interest in AGEs and ALEs involving different aspects of research which are essentially focused on set-up and application of analytical strategies (1) to identify, characterize, and quantify AGEs and ALEs in different pathophysiological conditions ; (2) to elucidate the molecular basis of their biological effects ; and (3) to discover compounds able to inhibit AGEs/ALEs damaging effects not only as biological tools aimed at validating AGEs/ALEs as drug target, but also as promising drugs. All the above-mentioned research stages require a clear picture of the chemical formation of AGEs/ALEs but this is not simple, due to the complex and heterogeneous pathways, involving different precursors and mechanisms. In view of this intricate scenario, the aim of the present review is to group the main AGEs and ALEs and to describe, for each of them, the precursors and mechanisms of formation

    Post-graduation migration intentions of students of Lebanese medical schools: a survey study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The international migration of physicians is a global public health problem. Lebanon is a source country with the highest emigration factor in the Middle East and North Africa and the 7th highest in the World. Given that residency training abroad is a critical step in the migration of physicians, the objective of this study was to survey students of Lebanese medical schools about their intentions to train abroad and their post training plans.</p> <p>Methods</p> <p>Our target population consisted of all students of Lebanese medical schools in the pre-final and final years of medical school. We developed the survey questionnaire based on the results of a qualitative study assessing the intentions and motives for students of Lebanese medical schools to train abroad. The questionnaire inquired about student's demographic and educational characteristics, intention to train abroad, the chosen country of abroad training, and post-training intention of returning to Lebanon.</p> <p>Results</p> <p>Of 576 eligible students, 425 participated (73.8% response rate). 406 (95.5%) respondents intended to travel abroad either for specialty training (330 (77.6%)) or subspecialty training (76 (17.9%)). Intention to train abroad was associated with being single compared with being married. The top 4 destination countries were the US (301(74.1%)), France (49 (12.1%)), the United Kingdom (31 (7.6%)) and Canada (17 (4.2%)). One hundred and two (25.1%) respondents intended to return to Lebanon directly after finishing training abroad; 259 (63.8%) intended to return to Lebanon after working abroad temporarily for a varying number or years; 43 (10.6%) intended to never return to Lebanon. The intention to stay indefinitely abroad was associated male sex and having a 2<sup>nd </sup>citizenship. It was inversely associated with being a student of one of the French affiliated medical schools and a plan to train in a surgical specialty.</p> <p>Conclusion</p> <p>An alarming percentage of students of Lebanese medical schools intend to migrate for post graduate training, mainly to the US. A minority intends to return directly to Lebanon after finishing training abroad.</p

    Biocompatibility of oxygen-plasma-treated polystyrene substrates

    Full text link
    The biocompatibility of polystyrene (PS) samples has been improved by treatment with weakly ionized highly non-equilibrium oxygen plasma. Samples were exposed to plasma for 30 s for which they have received a dose of ions of 4.5 × 1017 m−2 and a neutral oxygen atom dose of 3 × 10−23 m−2. Both untreated and plasma-treated samples were tested for biocompatibility according to the same procedure. Proliferation of human mammary epithelial cells (HMECs) on samples revealed a dramatically improved biocompatibility of polystyrene treated by oxygen plasma. The HMECs were deposited on all samples and incubated for 1, 2 and 6 days. MTT test revealed about two times higher activity of cell enzymes after 48 h incubation. The activity for plasma-treated samples remained much higher than for untreated samples even after 6 days of incubation when the samples were already covered with a dense film of HMECs

    Investigating the Role of Islet Cytoarchitecture in Its Oscillation Using a New β-Cell Cluster Model

    Get PDF
    The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of β cells in each islet. The functional role of islet β cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP) cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP) cluster that is conventionally used. Using our new model we investigated the functional characteristics of β-cell clusters, including the fraction of cells able to burst fb, the synchronization index λ of the bursting β cells, the bursting period Tb, the plateau fraction pf, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells nβ, number of inter-β cell couplings of each β cell nc, and the coupling strength gc. We found that at low values of nβ, nc and gc, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at nβ∼100, nc∼6 and gc∼200 pS. In addition, normal β-cell clusters are robust against significant perturbation to their architecture, including the presence of non-β cells or dead β cells. In clusters with nβ>∼100, coordinated β-cell bursting can be maintained at up to 70% of β-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a β-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are important to understand the islet bursting phenomenon and the regulation of insulin secretion, under both physiological and pathological conditions
    corecore