2,243 research outputs found

    Contact and voter processes on the infinite percolation cluster as models of host-symbiont interactions

    Full text link
    We introduce spatially explicit stochastic processes to model multispecies host-symbiont interactions. The host environment is static, modeled by the infinite percolation cluster of site percolation. Symbionts evolve on the infinite cluster through contact or voter type interactions, where each host may be infected by a colony of symbionts. In the presence of a single symbiont species, the condition for invasion as a function of the density of the habitat of hosts and the maximal size of the colonies is investigated in details. In the presence of multiple symbiont species, it is proved that the community of symbionts clusters in two dimensions whereas symbiont species may coexist in higher dimensions.Comment: Published in at http://dx.doi.org/10.1214/10-AAP734 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The VIMOS Ultra Deep Survey. Luminosity and stellar mass dependence of galaxy clustering at z~3

    Get PDF
    We present the study of the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 2<<z<<3.5 using 3236 galaxies with robust spectroscopic redshifts from the VIMOS Ultra Deep Survey (VUDS). We measure the two-point real-space correlation function wp(rp)w_p(r_p) for four volume-limited stellar mass and four luminosity, MUV_{UV} absolute magnitude selected, sub-samples. We find that the scale dependent clustering amplitude r0r_0 significantly increases with increasing luminosity and stellar mass indicating a strong galaxy clustering dependence on these properties. This corresponds to a strong relative bias between these two sub-samples of Δ\Deltab/b^*=0.43. Fitting a 5-parameter HOD model we find that the most luminous and massive galaxies occupy the most massive dark matter haloes with \langleMh_h\rangle = 1012.30^{12.30} h1^{-1} M_{\odot}. Similar to the trends observed at lower redshift, the minimum halo mass Mmin_{min} depends on the luminosity and stellar mass of galaxies and grows from Mmin_{min} =109.73^{9.73} h1^{-1}M_{\odot} to Mmin_{min}=1011.58^{11.58} h1^{-1}M_{\odot} from the faintest to the brightest among our galaxy sample, respectively. We find the difference between these halo masses to be much more pronounced than is observed for local galaxies of similar properties. Moreover, at z~3, we observe that the masses at which a halo hosts, on average, one satellite and one central galaxy is M1_1\approx4Mmin_{min} over all luminosity ranges, significantly lower than observed at z~0 indicating that the halo satellite occupation increases with redshift. The luminosity and stellar mass dependence is also reflected in the measurements of the large scale galaxy bias, which we model as bg,HOD_{g,HOD}(>>L)=1.92+25.36(L/L^*)7.01^{7.01}. We conclude our study with measurements of the stellar-to-halo mass ratio (SHMR).Comment: 20 pages, 11 figures, A&A in press, v2. revised discussion in sec. 5.5, changed Fig. 4 and Fig. 11, added reference

    The infrared luminosity function of galaxies at redshifts z=1 and z~2 in the GOODS fields

    Get PDF
    We present the rest-frame 8 micron luminosity function (LF) at redshifts z=1 and ~2, computed from Spitzer 24 micron-selected galaxies in the GOODS fields over an area of 291 sq. arcmin. Using classification criteria based on X-ray data and IRAC colours, we identify the AGN in our sample. The rest-frame 8 micron LF for star-forming galaxies at redshifts z=1 and ~2 have the same shape as at z~0, but with a strong positive luminosity evolution. The number density of star-forming galaxies with log_{10}(nu L_nu(8 micron))>11 increases by a factor >250 from redshift z~0 to 1, and is basically the same at z=1 and ~2. The resulting rest-frame 8 micron luminosity densities associated with star formation at z=1 and ~2 are more than four and two times larger than at z~0, respectively. We also compute the total rest-frame 8 micron LF for star-forming galaxies and AGN at z~2 and show that AGN dominate its bright end, which is well-described by a power-law. Using a new calibration based on Spitzer star-forming galaxies at 0<z<0.6 and validated at higher redshifts through stacking analysis, we compute the bolometric infrared (IR) LF for star-forming galaxies at z=1 and ~2. We find that the respective bolometric IR luminosity densities are (1.2+/-0.2) x 10^9 and (6.6^{+1.2}_{-1.0}) x 10^8 L_sun Mpc^{-3}, in agreement with previous studies within the error bars. At z~2, around 90% of the IR luminosity density associated with star formation is produced by luminous and ultraluminous IR galaxies (LIRG and ULIRG), with the two populations contributing in roughly similar amounts. Finally, we discuss the consistency of our findings with other existing observational results on galaxy evolution.Comment: Accepted for publication in the ApJ. 33 pages, 15 figures. Uses emulateap

    Construction Stage Analysis for a New Mixed Structure Building in Milan

    Get PDF
    In this study the Construction Stage Analysis (CSA) of a new mixed structure building is discussed in order to identify the best timing and execution activities scheduling. The building is part of a new university campus that will be realized close to the center of the city. The CSA is carried out by the implementation of two models: the finite element model for the structural analyses and the BIM model for controlling the sequence of the construction phases. Once fixed the structural model, in the preliminary design phase, different sequences are analyzed in order to optimize the construction management in terms of timing and costs. Moreover, the optimization of the construction phases is set by considering the creep and shrinkage of the concrete material

    Luminosity Functions of Elliptical Galaxies at z < 1.2

    Get PDF
    The luminosity functions of E/S0 galaxies are constructed in 3 different redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.2), using the data from the Hubble Space Telescope Medium Deep Survey (HST MDS) and other HST surveys. These independent luminosity functions show the brightening in the luminosity of E/S0s by about 0.5~1.0 magnitude at z~1, and no sign of significant number evolution. This is the first direct measurement of the luminosity evolution of E/S0 galaxies, and our results support the hypothesis of a high redshift of formation (z > 1) for elliptical galaxies, together with weak evolution of the major merger rate at z < 1.Comment: To be published in ApJ Letters, 4 pages, AAS Latex, 4 figures, and 2 table

    Two-Dimensional Topology of the 2dF Galaxy Redshift Survey

    Full text link
    We study the topology of the publicly available data released by the 2dFGRS. The 2dFGRS data contains over 100,000 galaxy redshifts with a magnitude limit of b_J=19.45 and is the largest such survey to date. The data lie over a wide range of right ascension (75 degree strips) but only within a narrow range of declination (10 degree and 15 degree strips). This allows measurements of the two-dimensional genus to be made. The NGP displays a slight meatball shift topology, whereas the SGP displays a bubble like topology. The current SGP data also have a slightly higher genus amplitude. In both cases, a slight excess of overdense regions are found over underdense regions. We assess the significance of these features using mock catalogs drawn from the Virgo Consortium's Hubble Volume LCDM z=0 simulation. We find that differences between the NGP and SGP genus curves are only significant at the 1 sigma level. The average genus curve of the 2dFGRS agrees well with that extracted from the LCDM mock catalogs. We compare the amplitude of the 2dFGRS genus curve to the amplitude of a Gaussian random field with the same power spectrum as the 2dFGRS and find, contradictory to results for the 3D genus of other samples, that the amplitude of the GRF genus curve is slightly lower than that of the 2dFGRS. This could be due to a a feature in the current data set or the 2D genus may not be as sensitive as the 3D genus to non-linear clustering due to the averaging over the thickness of the slice in 2D. (Abridged)Comment: Submitted to ApJ A version with Figure 1 in higher resolution can be obtained from http://www.physics.drexel.edu/~hoyle

    The Evolution of the Luminosity Function in Deep Fields: A Comparison with CDM Models

    Get PDF
    The galaxy Luminosity Function (LF) has been estimated in the rest frame B luminosity at 0<z<1.25 and at 1700 {\AA} for 2.5<z<4.5 from deep multicolor surveys in the HDF-N, HDF-S, NTT-DF. The results have been compared with a recent version of galaxy formation models in the framework of hierarchical clustering in a flat Cold Dark Matter Universe with cosmological constant. The results show a general agreement for z<= 1, although the model LF has a steeper average slope at the faint end; at z~3 such feature results in an overprediction of the number of faint (I_{AB}~ 27) galaxies, while the agreement at the bright end becomes critically sensitive to the details of dust absorption at such redshifts. The discrepancies at the faint end show that a refined treatement of the physical processes involving smaller galaxies is to be pursued in the models, in terms of aggregation processes and/or stellar feedback heavily affecting the luminosity of the low luminosity objects. The implications of our results on the evolution of the cosmological star formation rate are discussed.Comment: Revised version; corrected magnitudes at 1700 Angstrom in figure 2; ApJ

    Galaxy number counts in the Hubble Deep Field as a strong constraint on a hierarchical galaxy formation model

    Get PDF
    Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models for (1) the standard cold dark matter (CDM) universe, (2) a low-density flat universe with nonzero cosmological constant, and (3) a low-density open universe with zero cosmological constant. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-redshift galaxies, and also from the absorption of visible light by internal dust and intergalactic \ion{H}{1} clouds. Contrary to previous SAM analyses which do not take into account such selection effects, we find, from comparison with observed counts and redshifts of faint galaxies in the Hubble Deep Field (HDF), that the standard CDM universe is {\it not} preferred, and a low-density universe either with or without cosmological constant is favorable, as suggested by other recent studies. Moreover, we find that a simple prescription for the time scale of star formation (SF), being proportional to the dynamical time scale of the formation of the galactic disk, is unable to reproduce the observed number- redshift relation for HDF galaxies, and that the SF time scale should be nearly independent of redshift, as suggested by other SAM analyses for the formation of quasars and the evolution of damped Ly-α\alpha systems.Comment: 16 pages, 13 figures, LaTeX, using emulateapj5.st

    The Nearby Optical Galaxy Sample: The Local Galaxy Luminosity Function

    Get PDF
    In this paper we derive the galaxy luminosity function from the Nearby Optical Galaxy (NOG) sample, which is a nearly complete, magnitude-limited (B<14 mag), all-sky sample of nearby optical galaxies (~6400 galaxies with cz<5500 km/s). For this local sample, we use galaxy distance estimates based on different peculiar velocity models. Therefore, the derivation of the luminosity function is carried out using the locations of field and grouped galaxies in real distance space. The local field galaxy luminosity function in the B system is well described by a Schechter function. The exact values of the Schechter parameters slightly depend on the adopted peculiar velocity field models. The shape of the luminosity function of spiral galaxies does not differ significantly from that of E-S0 galaxies. On the other hand, the late-type spirals and irregulars have a very steeply rising luminosity function towards the faint end, whereas the ellipticals appreciably decrease in number towards low luminosities. The presence of galaxy systems in the NOG sample does not affect significantly the field galaxy luminosity function, since environmental effects on the total luminosity function appear to be marginal.Comment: 35 pages including 7 figures and 4 tables. Accepted for publication in Ap

    Galaxy Number Counts in the Subaru Deep Field: Multi-band Analysis in a Hierarchical Galaxy Formation Model

    Get PDF
    Number counts of galaxies are re-analyzed using a semi-analytic model (SAM) of galaxy formation based on the hierarchical clustering scenario. Faint galaxies in the Subaru Deep Field (SDF) and the Hubble Deep Field (HDF) are compared with our model galaxies. We have determined the astrophysical parameters in the SAM that reproduce observations of nearby galaxies, and used them to predict the number counts and redshifts of faint galaxies for three cosmological models, the standard cold dark matter (CDM) universe, a flat lambda-CDM, and an open CDM. The novelty of our SAM analysis is the inclusion of selection effects arising from the cosmological dimming of surface brightness of high-z galaxies, and from the absorption of visible light by internal dust and intergalactic HI clouds. As was found in our previous work, in which the UV/optical HDF galaxies were compared with our model galaxies, we find that our SAM reproduces counts of near-IR SDF galaxies in low-density models, and that the standard CDM universe is not preferred, as suggested by other recent studies. Moreover, we find that simple prescriptions for (1) the timescale of star formation being proportional to the dynamical time scale of the formation of galactic disks, (2) the size of galactic disks being rotationally supported with the same specific angular momentum as that of surrounding dark halo, and (3) the dust optical depth being proportional to the metallicity of cold gas, cannot completely explain all of observed data. Improved prescriptions incorporating mild z-dependence for those are suggested from our SAM analysis.Comment: 16 pages, 13 figures, to appear in Ap
    corecore