394 research outputs found

    Three Dimensional Topological Field Theory induced from Generalized Complex Structure

    Full text link
    We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold XX to an arbitrary generalized complex manifold MM. The theory is invariant under the diffeomorphism on the world volume and the bb-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two dimensional topological sigma model with a generalized complex structure as a boundary action on X\partial X. As a special case, we obtain three dimensional realization of a WZ-Poisson manifold.Comment: 18 page

    An Alternative Topological Field Theory of Generalized Complex Geometry

    Full text link
    We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is AA model in the case that the generalized complex structuredepends on only a symplectic structure. Our new model is BB model in the case that the generalized complex structure depends on only a complex structure.Comment: 29 pages, typos and references correcte

    Detecting Precipitation Climate Changes: An Approach Based on a Stochastic Daily Precipitation Model

    Get PDF
    2002 Mathematics Subject Classification: 62M10.We consider development of daily precipitation models based on [3] for some sites in Bulgaria. The precipitation process is modelled as a two-state first-order nonstationary Markov model. Both the probability of rainfall occurrance and the rainfall intensity are allowed depend on the intensity on the preceeding day. To investigate the existence of long-term trend and of changes in the pattern of seasonal variation we use a synthesis of the methodology presented in [3] and the idea behind the classical running windows technique for data smoothing. The resulting time series of model parameters are used to quantify changes in the precipitation process over the territory of Bulgaria

    A heterotic sigma model with novel target geometry

    Full text link
    We construct a (1,2) heterotic sigma model whose target space geometry consists of a transitive Lie algebroid with complex structure on a Kaehler manifold. We show that, under certain geometrical and topological conditions, there are two distinguished topological half--twists of the heterotic sigma model leading to A and B type half--topological models. Each of these models is characterized by the usual topological BRST operator, stemming from the heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with the former, originating from the (1,0) supersymmetry. These BRST operators combined in a certain way provide each half--topological model with two inequivalent BRST structures and, correspondingly, two distinct perturbative chiral algebras and chiral rings. The latter are studied in detail and characterized geometrically in terms of Lie algebroid cohomology in the quasiclassical limit.Comment: 83 pages, no figures, 2 references adde

    Generalized structures of N=1 vacua

    Full text link
    We characterize N=1 vacua of type II theories in terms of generalized complex structure on the internal manifold M. The structure group of T(M) + T*(M) being SU(3) x SU(3) implies the existence of two pure spinors Phi_1 and Phi_2. The conditions for preserving N=1 supersymmetry turn out to be simple generalizations of equations that have appeared in the context of N=2 and topological strings. They are (d + H wedge) Phi_1=0 and (d + H wedge) Phi_2 = F_RR. The equation for the first pure spinor implies that the internal space is a twisted generalized Calabi-Yau manifold of a hybrid complex-symplectic type, while the RR-fields serve as an integrability defect for the second.Comment: 21 pages. v2, v3: minor changes and correction

    Poisson sigma model on the sphere

    Full text link
    We evaluate the path integral of the Poisson sigma model on sphere and study the correlators of quantum observables. We argue that for the path integral to be well-defined the corresponding Poisson structure should be unimodular. The construction of the finite dimensional BV theory is presented and we argue that it is responsible for the leading semiclassical contribution. For a (twisted) generalized Kahler manifold we discuss the gauge fixed action for the Poisson sigma model. Using the localization we prove that for the holomorphic Poisson structure the semiclassical result for the correlators is indeed the full quantum result.Comment: 38 page

    M-theory on eight-manifolds revisited: N=1 supersymmetry and generalized Spin(7) structures

    Full text link
    The requirement of N=1{\cal N}=1 supersymmetry for M-theory backgrounds of the form of a warped product M×wX{\cal M}\times_{w}X, where XX is an eight-manifold and M{\cal M} is three-dimensional Minkowski or AdS space, implies the existence of a nowhere-vanishing Majorana spinor ξ\xi on XX. ξ\xi lifts to a nowhere-vanishing spinor on the auxiliary nine-manifold Y:=X×S1Y:=X\times S^1, where S1S^1 is a circle of constant radius, implying the reduction of the structure group of YY to Spin(7)Spin(7). In general, however, there is no reduction of the structure group of XX itself. This situation can be described in the language of generalized Spin(7)Spin(7) structures, defined in terms of certain spinors of Spin(TYTY)Spin(TY\oplus T^*Y). We express the condition for N=1{\cal N}=1 supersymmetry in terms of differential equations for these spinors. In an equivalent formulation, working locally in the vicinity of any point in XX in terms of a `preferred' Spin(7)Spin(7) structure, we show that the requirement of N=1{\cal N}=1 supersymmetry amounts to solving for the intrinsic torsion and all irreducible flux components, except for the one lying in the 27\bf{27} of Spin(7)Spin(7), in terms of the warp factor and a one-form LL on XX (not necessarily nowhere-vanishing) constructed as a ξ\xi bilinear; in addition, LL is constrained to satisfy a pair of differential equations. The formalism based on the group Spin(7)Spin(7) is the most suitable language in which to describe supersymmetric compactifications on eight-manifolds of Spin(7)Spin(7) structure, and/or small-flux perturbations around supersymmetric compactifications on manifolds of Spin(7)Spin(7) holonomy.Comment: 24 pages. V2: introduction slightly extended, typos corrected in the text, references added. V3: the role of Spin(7) clarified, erroneous statements thereof corrected. New material on generalized Spin(7) structures in nine dimensions. To appear in JHE

    Generalized Kahler Geometry from supersymmetric sigma models

    Full text link
    We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.Comment: 18 page

    Topological A-Type Models with Flux

    Full text link
    We study deformations of the A-model in the presence of fluxes, by which we mean rank-three tensors with antisymmetrized upper/lower indices, using the AKSZ construction. Generically these are topological membrane models, and we show that the fluxes are related to deformations of the Courant bracket which generalize the twist by a closed 3-from HH, in the sense that satisfying the AKSZ master equation implies the integrability conditions for an almost generalized complex structure with respect to the deformed Courant bracket. In addition, the master equation imposes conditions on the fluxes that generalize dH=0dH=0. The membrane model can be defined on a large class of U(m)U(m)- and U(m)×U(m)U(m) \times U(m)-structure manifolds, including geometries inspired by (1,1)(1,1) supersymmetric σ\sigma-models with additional supersymmetries due to almost complex (but not necessarily complex) structures in the target space. Furthermore, we show that the model can be defined on three particular half-flat manifolds related to the Iwasawa manifold. When only HH-flux is turned on it is possible to obtain a topological string model, which we do for the case of a Calabi-Yau with a closed 3-form turned on. The simplest deformation from the A-model is due to the (2,0)+(0,2)(2,0)+ (0,2) component of a non-trivial bb-field. The model is generically no longer evaluated on holomorphic maps and defines new topological invariants. Deformations due to HH-flux can be more radical, completely preventing auxiliary fields from being integrated out.Comment: 30 pages. v2: Improved Version. References added. v3: Minor changes, published in JHE

    A sigma model field theoretic realization of Hitchin's generalized complex geometry

    Full text link
    We present a sigma model field theoretic realization of Hitchin's generalized complex geometry, which recently has been shown to be relevant in compactifications of superstring theory with fluxes. Hitchin sigma model is closely related to the well known Poisson sigma model, of which it has the same field content. The construction shows a remarkable correspondence between the (twisted) integrability conditions of generalized almost complex structures and the restrictions on target space geometry implied by the Batalin--Vilkovisky classical master equation. Further, the (twisted) classical Batalin--Vilkovisky cohomology is related non trivially to a generalized Dolbeault cohomology.Comment: 28 pages, Plain TeX, no figures, requires AMS font files AMSSYM.DEF and amssym.tex. Typos in eq. 6.19 and some spelling correcte
    corecore