1,121 research outputs found
Preliminary diagnostic reference levels for endoscopic retrograde cholangio-pancreatography in Greece
The main objective of this study was to determine the preliminary Diagnostic Reference Levels (DRLs) in terms of Kerma Area Product (KAP) and fluoroscopy time (Tf) during Endoscopic Retrograde Cholangio-Pancreatography (ERCP) procedures. Additionally, an investigation was conducted to explore the statistical relation between KAP and Tf. Data from a set of 200 randomly selected patients treated in 4 large hospitals in Greece (50 patients per hospital) were analyzed in order to obtain preliminary DRLs for KAP and Tf during therapeutic ERCP procedures. Non-parametric statistic tests were performed in order to determine a statistically significant relation between KAP and Tf. The resulting third quartiles for KAP and Tf for hospitals (A, B, C and D) were found as followed: KAPA = 10.7 Gy cm^2, TfA = 4.9 min; KAPB = 7.5 Gy cm^2, TfB = 5.0 min; KAPC = 19.0 Gy cm^2, TfC = 7.3 min; KAPD = 52.4 Gy cm^2, TfD = 15.8 min. The third quartiles, calculated for the total 200 cases sample, are: KAP = 18.8 Gy cm^2 and Tf = 8.2 min. For 3 out of 4 hospitals and for the total sample, p-values of statistical indices (correlation of KAP and Tf) are less than 0.001, while for the Hospital A p-values are ranging from 0.07 to 0.08. Using curve fitting, we finally determine that the relation of Tf and KAP is deriving from a power equation (KAP = Tf^1.282) with R^2 = 0.85. The suggested Preliminary DRLs (deriving from the third quartiles of the total sample) for Greece are: KAP = 19 Gy cm^2 and Tf = 8 min, while the relation between KAP and Tf is efficiently described by a power equatio
Attentive Learning of Sequential Handwriting Movements: A Neural Network Model
Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)
Two-dimensional discrete wavelet analysis of multiparticle event topology in heavy ion collisions
The event-by-event analysis of multiparticle production in high energy hadron
and nuclei collisions can be performed using the discrete wavelet
transformation. The ring-like and jet-like structures in two-dimensional
angular histograms are well extracted by wavelet analysis. For the first time
the method is applied to the jet-like events with background simulated by event
generators, which are developed to describe nucleus-nucleus collisions at LHC
energies. The jet positions are located quite well by the discrete wavelet
transformation of angular particle distribution even in presence of strong
background.Comment: 6 pages, 6 figure
The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells
Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis.
<p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation.
<p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI.
<p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL
System-size dependence of strangeness production in nucleus-nucleus collisions at sqrt{s_{NN}}=17.3 GeV
Emission of pi, K, phi and Lambda was measured in near-central C+C and Si+Si
collisions at 158 AGeV beam energy. Together with earlier data for p+p, S+S and
Pb+Pb, the system-size dependence of relative strangeness production in
nucleus-nucleus collisions is obtained. Its fast rise and the saturation
observed at about 60 participating nucleons can be understood as onset of the
formation of coherent partonic subsystems of increasing size.Comment: Phys.Rev.Lett in print; version2: changes made according to the
request of the referee
Transverse Momentum Fluctuations in Nuclear Collisions at 158 AGeV
Results are presented on event-by-event fluctuations in transverse momentum
of charged particles, produced at forward rapidities in p+p, C+C, Si+Si and
Pb+Pb collisions at 158 AGeV. Three different characteristics are discussed:
the average transverse momentum of the event, the Phi_pT fluctuation measure
and two-particle transverse momentum correlations. In the kinematic region
explored, the dynamical fluctuations are found to be small. However, a
significant system size dependence of Phi_pT is observed, with the largest
value measured in peripheral Pb+Pb interactions. The data are compared with
predictions of several models.Comment: will be submitted to Phys. Rev.
Omega and Antiomega production in central Pb+Pb collisions at 40 and 158 AGeV
Results are presented on Omega production in central Pb+Pb collisions at 40
and 158 AGeV beam energy. Given are transverse-mass spectra, rapidity
distributions, and total yields for the sum Omega+Antiomega at 40 AGeV and for
Omega and Antiomega separately at 158 AGeV. The yields are strongly
under-predicted by the string-hadronic UrQMD model and are in better agreement
with predictions from a hadron gas models.Comment: 5 papes, 4 figures, 1 table, updated figure 4 and table 1. Final
version, including some editorial changes, as published in PR
Event-by-Event Fluctuations of Particle Ratios in Central Pb+Pb Collisions at 20 to 158 AGeV
In the vicinity of the QCD phase transition, critical fluctuations have been
predicted to lead to non-statistical fluctuations of particle ratios, depending
on the nature of the phase transition. Recent results of the NA49 energy scan
program show a sharp maximum of the ratio of K+ to Pi+ yields in central Pb+Pb
collisions at beam energies of 20-30 AGeV. This observation has been
interpreted as an indication of a phase transition at low SPS energies. We
present first results on event-by-event fluctuations of the kaon to pion and
proton to pion ratios at beam energies close to this maximum.Comment: 4 pages, 4 figures, Quark Matter 2004 proceeding
System size dependence of strange particle yields and spectra at sqrt(s)=17.3 GeV
Yields and spectra of strange hadrons (K+, K-, phi, Lambda and Antilambda) as
well as of charged pions were measured in near central C+C and Si+Si collisions
at 158 AGeV beam energy with the NA49 detector. Together with earlier data for
p+p, S+S and Pb+Pb reactions the system size dependence can be studied.
Relative strangeness production rises fast and saturates at about 60
participating nucleons; the net hyperon spectra show an increasing shift
towards midrapidity for larger colliding nuclei. An interpretation based on the
formation of coherent systems of increasing volume is proposed. The transverse
mass spectra can be described by a blast wave ansatz. Increasing flow velocity
is accompanied by decreasing temperatures for both kinetic and chemical freeze
out. The increasing gap between inelastic and elastic decoupling leaves space
for rescattering.Comment: 8 pages, 6 figures, Proceedings of the Hot Quarks 2004 worksho
- …
