2,807 research outputs found
Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small animal imaging
Monte Carlo simulations are increasingly used in scintigraphic imaging to
model imaging systems and to develop and assess tomographic reconstruction
algorithms and correction methods for improved image quantitation. GATE (GEANT
4 Application for Tomographic Emission) is a new Monte Carlo simulation
platform based on GEANT4 dedicated to nuclear imaging applications. This paper
describes the GATE simulation of a prototype of scintillation camera dedicated
to small animal imaging and consisting of a CsI(Tl) crystal array coupled to a
position sensitive photomultiplier tube. The relevance of GATE to model the
camera prototype was assessed by comparing simulated 99mTc point spread
functions, energy spectra, sensitivities, scatter fractions and image of a
capillary phantom with the corresponding experimental measurements. Results
showed an excellent agreement between simulated and experimental data:
experimental spatial resolutions were predicted with an error less than 100 mu
m. The difference between experimental and simulated system sensitivities for
different source-to-collimator distances was within 2%. Simulated and
experimental scatter fractions in a [98-182 keV] energy window differed by less
than 2% for sources located in water. Simulated and experimental energy spectra
agreed very well between 40 and 180 keV. These results demonstrate the ability
and flexibility of GATE for simulating original detector designs. The main
weakness of GATE concerns the long computation time it requires: this issue is
currently under investigation by the GEANT4 and the GATE collaboration
A monitoring method for the Low Voltage Power Supply modules of the ATLAS Tile Calorimeter
We present a method for testing the operational stability of Low Voltage Power Supply modules of the ATLAS Tile Calorimeter, based on a self-consistent determination of the stability criteria. The recorded voltage, current, and temperature values of each module are retrieved from the Oracle database for a long and smooth running period and their mean and RMS values over that period are determined, as well as their average recording rates, by taking into account the â??smoothingâ?? procedure which is applied during data recording to reduce data storage. The average behavior of the ensemble of all modules is determined from those time-integrated quantities and the modules are then tested one-by-one by comparing with the ensemble averages. The proposed method is tested for all Long Barrel modules operated during April of 2007
A PMT-Block test bench
The front-end electronics of the ATLAS hadronic calorimeter (Tile Cal) is
housed in a unit, called {\it PMT-Block}. The PMT-Block is a compact instrument
comprising a light mixer, a PMT together with its divider and a {\it 3-in-1}
card, which provides shaping, amplification and integration for the signals.
This instrument needs to be qualified before being assembled on the detector. A
PMT-Block test bench has been developed for this purpose. This test bench is a
system which allows fast, albeit accurate enough, measurements of the main
properties of a complete PMT-Block. The system, both hardware and software, and
the protocol used for the PMT-Blocks characterisation are described in detail
in this report. The results obtained in the test of about 10000 PMT-Blocks
needed for the instrumentation of the ATLAS (LHC-CERN) hadronic Tile
Calorimeter are also reported.Comment: 23 pages, 10 figure
Design and construction of new central and forward muon counters for CDF II
New scintillation counters have been designed and constructed for the CDF
upgrade in order to complete the muon coverage of the central CDF detector, and
to extend this coverage to larger pseudorapidity. A novel light collection
technique using wavelength shifting fibers, together with high quality
polystyrene-based scintillator resulted in compact counters with good and
stable light collection efficiency over lengths extending up to 320 cm. Their
design and construction is described and results of their initial performance
are reported.Comment: 20 pages, 15 figure
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data
A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector
- …
