6,765 research outputs found
A model of a pumped continuous atom laser
We present a model of a cw atom laser based on a system of coupled GP
equations. The model incorporates continuous Raman outcoupling, pumping and
three-body recombination. The outcoupled field has minimal atomic density
fluctuations and is locally monochromatic.Comment: 10 pages, 8 eps figures, typos fixe
Quantifying evolutionary constraints on B cell affinity maturation
The antibody repertoire of each individual is continuously updated by the
evolutionary process of B cell receptor mutation and selection. It has recently
become possible to gain detailed information concerning this process through
high-throughput sequencing. Here, we develop modern statistical molecular
evolution methods for the analysis of B cell sequence data, and then apply them
to a very deep short-read data set of B cell receptors. We find that the
substitution process is conserved across individuals but varies significantly
across gene segments. We investigate selection on B cell receptors using a
novel method that side-steps the difficulties encountered by previous work in
differentiating between selection and motif-driven mutation; this is done
through stochastic mapping and empirical Bayes estimators that compare the
evolution of in-frame and out-of-frame rearrangements. We use this new method
to derive a per-residue map of selection, which provides a more nuanced view of
the constraints on framework and variable regions.Comment: Previously entitled "Substitution and site-specific selection driving
B cell affinity maturation is consistent across individuals
Bayesian Exponential Random Graph Models with Nodal Random Effects
We extend the well-known and widely used Exponential Random Graph Model
(ERGM) by including nodal random effects to compensate for heterogeneity in the
nodes of a network. The Bayesian framework for ERGMs proposed by Caimo and
Friel (2011) yields the basis of our modelling algorithm. A central question in
network models is the question of model selection and following the Bayesian
paradigm we focus on estimating Bayes factors. To do so we develop an
approximate but feasible calculation of the Bayes factor which allows one to
pursue model selection. Two data examples and a small simulation study
illustrate our mixed model approach and the corresponding model selection.Comment: 23 pages, 9 figures, 3 table
Quantifying structure in networks
We investigate exponential families of random graph distributions as a
framework for systematic quantification of structure in networks. In this paper
we restrict ourselves to undirected unlabeled graphs. For these graphs, the
counts of subgraphs with no more than k links are a sufficient statistics for
the exponential families of graphs with interactions between at most k links.
In this framework we investigate the dependencies between several observables
commonly used to quantify structure in networks, such as the degree
distribution, cluster and assortativity coefficients.Comment: 17 pages, 3 figure
Stability of continuously pumped atom lasers
A multimode model of a continuously pumped atom laser is shown to be unstable
below a critical value of the scattering length. Above the critical scattering
length, the atom laser reaches a steady state, the stability of which increases
with pumping. Below this limit the laser does not reach a steady state. This
instability results from the competition between gain and loss for the excited
states of the lasing mode. It will determine a fundamental limit for the
linewidth of an atom laser beam.Comment: 4 page
Remote Detection of Saline Intrusion in a Coastal Aquifer Using Borehole Measurements of Self-Potential
Funded by NERC CASE studentship . Grant Number: NE/I018417/1Peer reviewedPublisher PD
A Bose-condensed, simultaneous dual species Mach-Zehnder atom interferometer
This paper presents the first realisation of a simultaneous Rb
-Rb Mach-Zehnder atom interferometer with Bose-condensed atoms. A number
of ambitious proposals for precise terrestrial and space based tests of the
Weak Equivalence Principle rely on such a system. This implementation utilises
hybrid magnetic-optical trapping to produce spatially overlapped condensates
with a duty cycle of 20s. A horizontal optical waveguide with co-linear Bragg
beamsplitters and mirrors is used to simultaneously address both isotopes in
the interferometer. We observe a non-linear phase shift on a non-interacting
Rb interferometer as a function of interferometer time, , which we
show arises from inter-isotope scattering with the co-incident Rb
interferometer. A discussion of implications for future experiments is given.Comment: 7 pages, 5 figures. The authors welcome comments and feedback on this
manuscrip
Adjusting for Network Size and Composition Effects in Exponential-Family Random Graph Models
Exponential-family random graph models (ERGMs) provide a principled way to
model and simulate features common in human social networks, such as
propensities for homophily and friend-of-a-friend triad closure. We show that,
without adjustment, ERGMs preserve density as network size increases. Density
invariance is often not appropriate for social networks. We suggest a simple
modification based on an offset which instead preserves the mean degree and
accommodates changes in network composition asymptotically. We demonstrate that
this approach allows ERGMs to be applied to the important situation of
egocentrically sampled data. We analyze data from the National Health and
Social Life Survey (NHSLS).Comment: 37 pages, 2 figures, 5 tables; notation revised and clarified, some
sections (particularly 4.3 and 5) made more rigorous, some derivations moved
into the appendix, typos fixed, some wording change
Sparse Nerves in Practice
Topological data analysis combines machine learning with methods from
algebraic topology. Persistent homology, a method to characterize topological
features occurring in data at multiple scales is of particular interest. A
major obstacle to the wide-spread use of persistent homology is its
computational complexity. In order to be able to calculate persistent homology
of large datasets, a number of approximations can be applied in order to reduce
its complexity. We propose algorithms for calculation of approximate sparse
nerves for classes of Dowker dissimilarities including all finite Dowker
dissimilarities and Dowker dissimilarities whose homology is Cech persistent
homology. All other sparsification methods and software packages that we are
aware of calculate persistent homology with either an additive or a
multiplicative interleaving. In dowker_homology, we allow for any
non-decreasing interleaving function . We analyze the computational
complexity of the algorithms and present some benchmarks. For Euclidean data in
dimensions larger than three, the sizes of simplicial complexes we create are
in general smaller than the ones created by SimBa. Especially when calculating
persistent homology in higher homology dimensions, the differences can become
substantial
- …
