6,661 research outputs found
Application of the NASA airborne oceanographic lidar to the mapping of chlorophyll and other organic pigments
Laser fluorosensing techniques used for the airborne measurement of chlorophyll a and other naturally occurring waterborne pigments are reviewed. Previous experiments demonstrating the utility of the airborne oceanographic lidar (AOL) for assessment of various marine parameters are briefly discussed. The configuration of the AOL during the NOAA/NASA Superflux experiments is described. The participation of the AOL in these experiments is presented and the preliminary results are discussed. The importance of multispectral receiving capability in a laser fluorosensing system for providing reproducible measurements over wide areas having spatial variations in water column transmittance properties is addressed. This capability minimizes the number of truthing points required and is usable even in shallow estuarine areas where resuspension of bottom sediment is common. Finally, problems encountered on the Superflux missions and the resulting limitations on the AOL data sets are addressed and feasible solutions to these problems are provided
Discerning the Form of the Dense Core Mass Function
We investigate the ability to discern between lognormal and powerlaw forms
for the observed mass function of dense cores in star forming regions. After
testing our fitting, goodness-of-fit, and model selection procedures on
simulated data, we apply our analysis to 14 datasets from the literature.
Whether the core mass function has a powerlaw tail or whether it follows a pure
lognormal form cannot be distinguished from current data. From our simulations
it is estimated that datasets from uniform surveys containing more than
approximately 500 cores with a completeness limit below the peak of the mass
distribution are needed to definitively discern between these two functional
forms. We also conclude that the width of the core mass function may be more
reliably estimated than the powerlaw index of the high mass tail and that the
width may also be a more useful parameter in comparing with the stellar initial
mass function to deduce the statistical evolution of dense cores into stars.Comment: 6 pages, 2 figures, accepted for publication in PAS
Local stiffener and skin pocket buckling prediction by special PASCO modeling technique: Correlation to test data
Waffle panels are often used on fuselage structures such as that of the Space Shuttle. The waffle panel design is an efficient design for carrying biaxial, in-plane, and shear loads. The WAFFLE program was designed for application on waffle panels. The Panel Analysis and Sizing Code (PASCO) program was designed for analyzing and sizing uniaxially stiffened panels. The application of the PASCO program in conjunction with the WAFFLE program is discussed to account for both the fillet radius and the presence of stiffness in both directions. The results of the tests are used to verify that these adjustments are valid and necessary if accurate analysis of the waffle panel is to be achieved
Airborne lidar experiments at the Savannah River Plant
The results of remote sensing experiments at the Department of Energy (DOE) Savannah River Nuclear Facility utilizing the NASA Airborne Oceanographic Lidar (AOL) are presented. The flights were conducted in support of the numerous environmental monitoring requirements associated with the operation of the facility and for the purpose of furthering research and development of airborne lidar technology. Areas of application include airborne laser topographic mapping, hydrologic studies using fluorescent tracer dye, timber volume estimation, baseline characterization of wetlands, and aquatic chlorophyll and photopigment measurements. Conclusions relative to the usability of airborne lidar technology for the DOE for each of these remote sensing applications are discussed
Airborne laser topographic mapping results from initial joint NASA/US Army Corps of Engineers experiment
Initial results from a series of joint NASA/US Army Corps of Engineers experiments are presented. The NASA Airborne Oceanographic Lidar (AOL) was exercised over various terrain conditions, collecting both profile and scan data from which river basin cross sections are extracted. Comparisons of the laser data with both photogrammetry and ground surveys are made, with 12 to 27 cm agreement observed over open ground. Foliage penetration tests, utilizing the unique time-waveform sampling capability of the AOL, indicate 50 cm agreement with photogrammetry (known to have difficulty in foliage covered terrain)
An Evaluation of the Impact of the Social Care Modernisation Programme on the Implementation of Direct Payments London
Propfan Test Assessment (PTA): Flight test report
The Propfan Test Assessment (PTA) aircraft was flown to obtain glade stress and noise data for a 2.74m (9 ft.) diameter single rotation propfan. Tests were performed at Mach numbers to 0.85 and altitudes to 12,192m (40,000 ft.). The propfan was well-behaved structurally over the entire flight envelope, demonstrating that the blade design technology was completely adequate. Noise data were characterized by strong signals at blade passage frequency and up to 10 harmonics. Cabin noise was not so high as to preclude attainment of comfortable levels with suitable wall treatment. Community noise was not excessive
Proforma-based reporting in rectal cancer
The improvements in outcomes associate with the use of preoperative therapy rather than postoperative treatment means that clinical teams are increasingly reliant on imaging to identify high-risk features of disease to determine treatment plans. For many solid tumours, including rectal cancer, validated techniques have emerged in identifying prognostic factors pre-operatively. In the MERCURY study, a standardised scanning technique and the use of reporting proformas enabled consistently accurate assessment and documentation of the prognostic factors. This is now an essential tool to enable our clinical colleagues to make treatment decisions. In this review, we describe the proforma-based reporting tool that enables a systematic approach to the interpretation of the magnetic resonance images, thereby enabling all the clinically relevant features to be adequately assessed. © 2009 International Cancer Imaging Society
- …
