1,685 research outputs found

    Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis

    Full text link
    The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M_\pi^{-1}) using methods of relativistic chiral effective field theory (\chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M_\pi^2 are calculated using relativistic \chi EFT including octet and decuplet baryons. The \chi EFT calculations are extended into the \rho meson mass region using an N/D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.Comment: 23 pages, 12 figures, 3 tables. Typos corrected and discussion about the anomalous thresholds added. Matches the journal versio

    ϕ\phi meson transparency in nuclei from ϕN\phi N resonant interactions

    Full text link
    We investigate the ϕ\phi meson nuclear transparency using some recent theoretical developments on the ϕ\phi in medium self-energy. The inclusion of direct resonant ϕN\phi N-scattering and the kaon decay mechanisms leads to a ϕ\phi width much larger than in most previous theoretical approaches. The model has been confronted with photoproduction data from CLAS and LEPS and the recent proton induced ϕ\phi production from COSY finding an overall good agreement. The results support the need of a quite large direct ϕN\phi N-scattering contribution to the self-energy

    Studying the Pc(4450) resonance in J/psi photoproduction off protons

    Full text link
    The LHCb has reported the observation of a resonancelike structure, the Pc(4450), in the J/psi p invariant masses. In our work, we discuss the feasibility of detecting this structure in J/psi photoproduction, e.g. in the measurements that have been approved for the experiments in Hall A/C and in Hall B with CLAS12 at JLab. Also the GlueX Collaboration has already reported preliminary results. We take into account the experimental resolution effects, and perform a global fit to world J/psi photoproduction data in order to study the possibility of observing the Pc(4450) signal in future JLab data. We present a first estimate of the upper limit for the branching ratio of the Pc(4450) into the J/psi p channel, and we study the angular distributions of the differential cross sections. This will shed light on the nature and couplings of the Pc(4450) structure in the future photoproduction experiments.Comment: NSTAR 2017 conference proceeding

    Relating CP-violating decays to the neutron EDM

    Full text link
    We use the present upper bound on the neutron electric dipole moment to give an estimate for the upper limit of the CP-violating couplings of the η(η)\eta(\eta') meson to the neutron. Using this result, we derive constraints on the CP-violating two-pion decays of the η(η)\eta(\eta'). Our results are relevant for the running and planned GlueX and LHCb measurements of rare meson decays.Comment: NSTAR 2017 conference proceeding

    Nucleon resonance contributions to unpolarised inclusive electron scattering

    Get PDF
    The first CLAS12 experiments will provide high-precision data on inclusive electron scattering observables at a photon virtuality Q2Q^2 ranging from 0.05 GeV2^2 to 12 GeV2^2 and center-of-mass energies WW up to 4 GeV. In view of this endeavour, we present the modeling of the resonant contributions to the inclusive electron scattering observables. As input, we use the existing CLAS electrocoupling results obtained from exclusive meson electroproduction data off protons, and evaluate for the first time the resonant contributions based on the experimental results on the nucleon resonance electroexcitation. The uncertainties are given by the data and duly propagated through a Monte Carlo approach. In this way, we obtain estimates for the resonant contributions, important for insight into the nucleon parton distributions in the resonance region and for the studies of quark-hadron duality

    Structure of Pion Photoproduction Amplitudes

    Get PDF
    We derive and apply the finite energy sum rules to pion photoproduction. We evaluate the low energy part of the sum rules using several state-of-the-art models. We show how the differences in the low energy side of the sum rules might originate from different quantum number assignments of baryon resonances. We interpret the observed features in the low energy side of the sum rules with the expectation from Regge theory. Finally, we present a model, in terms of a Regge-pole expansion, that matches the sum rules and the high-energy observables.Comment: 19 pages, 15 figures and 4 table

    Finding and counting vertex-colored subtrees

    Get PDF
    The problems studied in this article originate from the Graph Motif problem introduced by Lacroix et al. in the context of biological networks. The problem is to decide if a vertex-colored graph has a connected subgraph whose colors equal a given multiset of colors MM. It is a graph pattern-matching problem variant, where the structure of the occurrence of the pattern is not of interest but the only requirement is the connectedness. Using an algebraic framework recently introduced by Koutis et al., we obtain new FPT algorithms for Graph Motif and variants, with improved running times. We also obtain results on the counting versions of this problem, proving that the counting problem is FPT if M is a set, but becomes W[1]-hard if M is a multiset with two colors. Finally, we present an experimental evaluation of this approach on real datasets, showing that its performance compares favorably with existing software.Comment: Conference version in International Symposium on Mathematical Foundations of Computer Science (MFCS), Brno : Czech Republic (2010) Journal Version in Algorithmic
    corecore