31 research outputs found
The effects of arginase inhibitor on lung oxidative stress and inflammation caused by pneumoperitoneum in rats
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
NY-ESO-1 expression in hepatocellular carcinoma: A potential new marker for early recurrence after surgery
NY-ESO-1 belongs to the cancer testis antigens (CTA) family, and is identified in a variety of tumors. Certain studies have demonstrated that NY-ESO-1 predicts tumor recurrence and treatment response. No reports are currently available regarding the correlation between NY-ESO-1 and the recurrence of hepatocellular carcinoma (HCC) following surgery. The purpose of the present study was to evaluate the association between NY-ESO-1 and relapse of HCC and to explore the possible mechanisms for this correlation. A total of 120 HCC patients were analyzed for the expression of NY-ESO-1 by immunohistochemistry (IHC). A stable NY-ESO-1 over-expressed HepG2 cell line (ESO-HepG2) was established to determine the biological effects of NY-ESO-1 on cell proliferation, cell cycle and migration by using the xCELLigence DP system, flow cytometry and xCELLigence SP system. NY-ESO-1 was positive in 28 of 120 (23.3%) HCC tumor tissues. NY-ESO-1 was not detectable in adjacent normal liver tissues. A close correlation was found between NY-ESO-1 expression and the recurrence of HCC following surgery (P=0.007). Kaplan-Meier analysis showed a shorter recurrence-free survival (RFS) for patients positive for NY-ESO-1 (log-rank test, P=0.003). The Cox regression model demonstrated that NY-ESO-1 expression was a significant independent predictor for the recurrence of HCC following curative surgery (P=0.022). Compared with HepG2 cells, ESO-HepG2 cells have increased migration but not proliferation ability. In conclusion, NY-ESO-1 expression is associated with worse HCC outcome following surgery, and the mechanism for this finding may be that NY-ESO-1 increases tumor cell migration
Identification of a pharmacophore of SKCa channel blockers
Small conductance calcium-activated potassium channels ( SK) are widely expressed throughout the central nervous system ( CNS) and the periphery. Three subtypes of SK channels have so far been identified in different parts of the brain. Activation of the SK channels by a rise in intracellular calcium leads to the hyperpolarisation of the membrane, reducing cell excitability. Blocking the SK channels might be beneficial in the treatment of depression, Parkinson's disease and cognitive disorders. However, few blockers of SK channels have been characterized. In this study, a pharmacophoric model of SK channels blockers is presented. It is based on a series of nonpeptidic compounds and apamin, a peptidic blocker. To create the pharmacophore model, the conformational space of nonpeptidic blockers was investigated to generate a series of distance constraints applied to a simulated annealing study of apamin. The resulting conformation was superimposed with the nonpeptidic blockers to give a pharmacophore
