6,061 research outputs found
Charmed-Baryon Spectroscopy from Lattice QCD with N_f=2+1+1 Flavors
We present the results of a calculation of the positive-parity ground-state
charmed-baryon spectrum using 2+1+1 flavors of dynamical quarks. The
calculation uses a relativistic heavy-quark action for the valence charm quark,
clover-Wilson fermions for the valence light and strange quarks, and HISQ sea
quarks. The spectrum is calculated with a lightest pion mass around 220 MeV,
and three lattice spacings (a \approx 0.12 fm, 0.09 fm, and 0.06 fm) are used
to extrapolate to the continuum. The light-quark mass extrapolation is
performed using heavy-hadron chiral perturbation theory up to O(m_pi^3) and at
next-to-leading order in the heavy-quark mass. For the well-measured charmed
baryons, our results show consistency with the experimental values. For the
controversial J=1/2 Xi_{cc}, we obtain the isospin-averaged value
M_{Xi_{cc}}=3595(39)(20)(6) MeV (the three uncertainties are statistics,
fitting-window systematic, and systematics from other lattice artifacts, such
as lattice scale setting and pion-mass determination), which shows a 1.7 sigma
deviation from the experimental value. We predict the yet-to-be-discovered
doubly and triply charmed baryons Xi_{cc}^*, Omega_{cc}, Omega_{cc}^* and
Omega_{ccc} to have masses 3648(42)(18)(7) MeV, 3679(40)(17)(5) MeV,
3765(43)(17)(5) MeV and 4761(52)(21)(6) MeV, respectively.Comment: 23 pages, 14 figure
Current Algebra and Conformal Field Theory on a Figure Eight
We examine the dynamics of a free massless scalar field on a figure eight
network. Upon requiring the scalar field to have a well defined value at the
junction of the network, it is seen that the conserved currents of the theory
satisfy Kirchhoff's law, that is that the current flowing into the junction
equals the current flowing out. We obtain the corresponding current algebra and
show that, unlike on a circle, the left- and right-moving currents on the
figure eight do not in general commute in quantum theory. Since a free scalar
field theory on a one dimensional spatial manifold exhibits conformal symmetry,
it is natural to ask whether an analogous symmetry can be defined for the
figure eight. We find that, unlike in the case of a manifold, the action plus
boundary conditions for the network are not invariant under separate conformal
transformations associated with left- and right-movers. Instead, the system is,
at best, invariant under only a single set of transformations. Its conserved
current is also found to satisfy Kirchhoff's law at the junction. We obtain the
associated conserved charges, and show that they generate a Virasoro algebra.
Its conformal anomaly (central charge) is computed for special values of the
parameters characterizing the network.Comment: 39 pages; Latex with 1 figure included in encapsulated postscript
format. psbox.tex require
On Budget-Feasible Mechanism Design for Symmetric Submodular Objectives
We study a class of procurement auctions with a budget constraint, where an
auctioneer is interested in buying resources or services from a set of agents.
Ideally, the auctioneer would like to select a subset of the resources so as to
maximize his valuation function, without exceeding a given budget. As the
resources are owned by strategic agents however, our overall goal is to design
mechanisms that are truthful, budget-feasible, and obtain a good approximation
to the optimal value. Budget-feasibility creates additional challenges, making
several approaches inapplicable in this setting. Previous results on
budget-feasible mechanisms have considered mostly monotone valuation functions.
In this work, we mainly focus on symmetric submodular valuations, a prominent
class of non-monotone submodular functions that includes cut functions. We
begin first with a purely algorithmic result, obtaining a
-approximation for maximizing symmetric submodular functions
under a budget constraint. We view this as a standalone result of independent
interest, as it is the best known factor achieved by a deterministic algorithm.
We then proceed to propose truthful, budget feasible mechanisms (both
deterministic and randomized), paying particular attention on the Budgeted Max
Cut problem. Our results significantly improve the known approximation ratios
for these objectives, while establishing polynomial running time for cases
where only exponential mechanisms were known. At the heart of our approach lies
an appropriate combination of local search algorithms with results for monotone
submodular valuations, applied to the derived local optima.Comment: A conference version appears in WINE 201
Heavy hadron spectroscopy and the bag model
Some time ago a slightly improved variant of bag model (the modified bag
model) suitable for the unified description of light and heavy hadrons was
developed. The main goal of the present work was to calculate the masses of the
ground state baryons containing bottom quarks in the framework of this model.
For completeness the predictions for other heavy hadrons are also given. The
reasonable agreement of our results with other theoretical calculations and
available experimental data suggests that our predictions could serve as a
useful complementary tool for the interpretation of heavy hadron spectra.Comment: 18 pages, 9 tables, references to experiments updated, rms deviations
given in some table
Relativistic Corrections to the Triton Binding Energy
The influence of relativity on the triton binding energy is investigated. The
relativistic three-dimensional version of the Bethe-Salpeter equation proposed
by Blankenbecler and Sugar (BbS) is used. Relativistic (non-separable)
one-boson-exchange potentials (constructed in the BbS framework) are employed
for the two-nucleon interaction. In a 34-channel Faddeev calculation, it is
found that relativistic effects increase the triton binding energy by about 0.2
MeV. Including charge-dependence (besides relativity), the final triton binding
energy predictions are 8.33 and 8.16 MeV for the Bonn A and B potential,
respectively.Comment: 25 pages of text (latex), 1 figure (not included, available upon
request
Clinicopathological Profile and Surgical Treatment of Abdominal Tuberculosis: A Single Centre Experience in Northwestern Tanzania.
Abdominal tuberculosis continues to be a major public health problem worldwide and poses diagnostic and therapeutic challenges to general surgeons practicing in resource-limited countries. This study was conducted to describe the clinicopathological profile and outcome of surgical treatment of abdominal tuberculosis in our setting and compare with what is described in literature. A prospective descriptive study of patients who presented with abdominal tuberculosis was conducted at Bugando Medical Centre (BMC) in northwestern Tanzania from January 2006 to February 2012. Ethical approval to conduct the study was obtained from relevant authorities. Statistical data analysis was performed using SPSS version 17.0. Out of 256 patients enrolled in the study, males outnumbered females. The median age was 28 years (range = 16-68 years). The majority of patients (77.3%) had primary abdominal tuberculosis. A total of 127 (49.6%) patients presented with intestinal obstruction, 106 (41.4%) with peritonitis, 17 (6.6%) with abdominal masses and 6 (2.3%) patients with multiple fistulae in ano. Forty-eight (18.8%) patients were HIV positive. A total of 212 (82.8%) patients underwent surgical treatment for abdominal tuberculosis. Bands /adhesions (58.5%) were the most common operative findings. Ileo-caecal region was the most common bowel involved in 122 (57.5%) patients. Release of adhesions and bands was the most frequent surgical procedure performed in 58.5% of cases. Complication and mortality rates were 29.7% and 18.8% respectively. The overall median length of hospital stay was 32 days and was significantly longer in patients with complications (p < 0.001). Advanced age (age ≥ 65 years), co-morbid illness, late presentation, HIV positivity and CD4+ count < 200 cells/μl were statistically significantly associated with mortality (p < 0.0001). The follow up of patients were generally poor as only 37.5% of patients were available for follow up at twelve months after discharge. Abdominal tuberculosis constitutes a major public health problem in our environment and presents a diagnostic challenge requiring a high index of clinical suspicion. Early diagnosis, early anti-tuberculous therapy and surgical treatment of the associated complications are essential for survival
Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function
We evaluate the one loop determinant of matter multiplet fields of N=4
supergravity in the near horizon geometry of quarter BPS black holes, and use
it to calculate logarithmic corrections to the entropy of these black holes
using the quantum entropy function formalism. We show that even though
individual fields give non-vanishing logarithmic contribution to the entropy,
the net contribution from all the fields in the matter multiplet vanishes. Thus
logarithmic corrections to the entropy of quarter BPS black holes, if present,
must be independent of the number of matter multiplet fields in the theory.
This is consistent with the microscopic results. During our analysis we also
determine the complete spectrum of small fluctuations of matter multiplet
fields in the near horizon geometry.Comment: LaTeX file, 52 pages; v2: minor corrections, references adde
Ratio of the Isolated Photon Cross Sections at \sqrt{s} = 630 and 1800 GeV
The inclusive cross section for production of isolated photons has been
measured in \pbarp collisions at GeV with the \D0 detector at
the Fermilab Tevatron Collider. The photons span a transverse energy ()
range from 7-49 GeV and have pseudorapidity . This measurement is
combined with to previous \D0 result at GeV to form a ratio
of the cross sections. Comparison of next-to-leading order QCD with the
measured cross section at 630 GeV and ratio of cross sections show satisfactory
agreement in most of the range.Comment: 7 pages. Published in Phys. Rev. Lett. 87, 251805, (2001
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
