10 research outputs found
Recovering the Imperfect: Cell Segmentation in the Presence of Dynamically Localized Proteins
Deploying off-the-shelf segmentation networks on biomedical data has become
common practice, yet if structures of interest in an image sequence are visible
only temporarily, existing frame-by-frame methods fail. In this paper, we
provide a solution to segmentation of imperfect data through time based on
temporal propagation and uncertainty estimation. We integrate uncertainty
estimation into Mask R-CNN network and propagate motion-corrected segmentation
masks from frames with low uncertainty to those frames with high uncertainty to
handle temporary loss of signal for segmentation. We demonstrate the value of
this approach over frame-by-frame segmentation and regular temporal propagation
on data from human embryonic kidney (HEK293T) cells transiently transfected
with a fluorescent protein that moves in and out of the nucleus over time. The
method presented here will empower microscopic experiments aimed at
understanding molecular and cellular function.Comment: Accepted at MICCAI Workshop on Medical Image Learning with Less
Labels and Imperfect Data, 202
Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors
Construction of a Multiwell Light-Induction Platform for Traceless Control of Gene Expression in Mammalian Cells
Mammalian cells can be engineered to incorporate light-responsive elements that reliably sense stimulation by light and activate endogenous pathways, such as the cAMP or Ca2+ pathway, to control gene expression. Light-inducible gene expression systems offer high spatiotemporal resolution, and are also traceless, reversible, tunable, and inexpensive. Melanopsin, a well-known representative of the animal opsins, is a G-protein-coupled receptor that triggers a Gαq-dependent signaling cascade upon activation with blue light (≈470 nm). Here, we describe how to rewire melanopsin activation by blue light to transgene expression in mammalian cells, with detailed instructions for constructing a 96-LED array platform with multiple tunable parameters for illumination of the engineered cells in multiwell plates.ISSN:1064-3745ISSN:1940-602
Epidemiology of critical states during pregnancy after assisted reproductive technologies
Exploiting natural chemical photosensitivity of anhydrotetracycline and tetracycline for dynamic and setpoint chemo-optogenetic control
Optogenetic Techniques for Manipulating and Sensing G Protein-Coupled Receptor Signaling
G protein-coupled receptors (GPCRs) form the largest class of membrane receptors in the mammalian genome with nearly 800 human genes encoding for unique subtypes. Accordingly, GPCR signaling is implicated in nearly all physiological processes. However, GPCRs have been difficult to study due in part to the complexity of their function which can lead to a plethora of converging or diverging downstream effects over different time and length scales. Classic techniques such as pharmacological control, genetic knockout and biochemical assays often lack the precision required to probe the functions of specific GPCR subtypes. Here we describe the rapidly-growing set of optogenetic tools, ranging from methods for optical control of the receptor itself to optical sensing and manipulation of downstream effectors. These tools permit the quantitative measurements of GPCRs and their downstream signaling with high specificity and spatiotemporal precision
