86 research outputs found

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    π0\pi^0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    Full text link
    Differential cross sections for the reaction γppπ0\gamma p \to p \pi^0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.Comment: 18 pages, 48 figure

    First Measurement of Beam-Recoil Observables Cx and Cz in Hyperon Photoproduction

    Full text link
    Spin transfer from circularly polarized real photons to recoiling hyperons has been measured for the reactions γ+pK++Λ\vec\gamma + p \to K^+ + \vec\Lambda and γ+pK++Σ0\vec\gamma + p \to K^+ + \vec\Sigma^0. The data were obtained using the CLAS detector at Jefferson Lab for center-of-mass energies WW between 1.6 and 2.53 GeV, and for 0.85<cosθK+c.m.<+0.95-0.85<\cos\theta_{K^+}^{c.m.}< +0.95. For the Λ\Lambda, the polarization transfer coefficient along the photon momentum axis, CzC_z, was found to be near unity for a wide range of energy and kaon production angles. The associated transverse polarization coefficient, CxC_x, is smaller than CzC_z by a roughly constant difference of unity. Most significantly, the {\it total} Λ\Lambda polarization vector, including the induced polarization PP, has magnitude consistent with unity at all measured energies and production angles when the beam is fully polarized. For the Σ0\Sigma^0 this simple phenomenology does not hold. All existing hadrodynamic models are in poor agreement with these results.Comment: 28 pages, 18 figures, Submitted to Physical Review

    Cardiovascular disease, chronic kidney disease, and diabetes mortality burden of cardiometabolic risk factors from 1980 to 2010: a comparative risk assessment

    Get PDF
    Background High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. Methods We used data for exposure to risk factors by country, age group, and sex from pooled analyses of populationbased health surveys. We obtained relative risks for the eff ects of risk factors on cause-specifi c mortality from metaanalyses of large prospective studies. We calculated the population attributable fractions for- each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the eff ects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specifi c population attributable fractions by the number of disease-specifi c deaths. We obtained cause-specifi c mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the fi nal estimates. Findings In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10\ub78 million deaths, 95% CI 10\ub71\u201311\ub75) of deaths from these diseases in 2010 were attributable to the combined eff ect of these four metabolic risk factors, compared with 67% (7\ub71 million deaths, 6\ub76\u20137\ub76) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined eff ects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. Interpretation The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing eff ect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the globalresponse to non-communicable diseases

    New Molecular Reporters for Rapid Protein Folding Assays

    Get PDF
    The GFP folding reporter assay [1] uses a C-terminal GFP fusion to report on the folding success of upstream fused polypeptides. The GFP folding assay is widely-used for screening protein variants with improved folding and solubility [2]–[8], but truncation artifacts may arise during evolution, i.e. from de novo internal ribosome entry sites [9]. One way to reduce such artifacts would be to insert target genes within the scaffolding of GFP circular permuted variants. Circular permutants of fluorescent proteins often misfold and are non-fluorescent, and do not readily tolerate fused polypeptides within the fluorescent protein scaffolding [10]–[12]. To overcome these limitations, and to increase the dynamic range for reporting on protein misfolding, we have created eight GFP insertion reporters with different sensitivities to protein misfolding using chimeras of two previously described GFP variants, the GFP folding reporter [1] and the robustly-folding “superfolder” GFP [13]. We applied this technology to engineer soluble variants of Rv0113, a protein from Mycobacterium tuberculosis initially expressed as inclusion bodies in Escherichia coli. Using GFP insertion reporters with increasing stringency for each cycle of mutagenesis and selection led to a variant that produced large amounts of soluble protein at 37°C in Escherichia coli. The new reporter constructs discriminate against truncation artifacts previously isolated during directed evolution of Rv0113 using the original C-terminal GFP folding reporter. Using GFP insertion reporters with variable stringency should prove useful for engineering protein variants with improved folding and solubility, while reducing the number of artifacts arising from internal cryptic ribosome initiation sites

    Measurement of the Polarized Structure Function σLT\sigma_{LT^\prime} for Pion Electroproduction in the Roper Resonance Region

    Full text link
    The polarized longitudinal-transverse structure function σLT\sigma_{LT^\prime} measures the interference between real and imaginary amplitudes in pion electroproduction and can be used to probe the coupling between resonant and non-resonant processes. We report new measurements of σLT\sigma_{LT^\prime} in the N(1440)1/2+N(1440){1/2}^+ (Roper) resonance region at Q2=0.40Q^2=0.40 and 0.65 GeV2^2 for both the π0p\pi^0 p and π+n\pi^+ n channels. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally polarized electrons at a beam energy of 1.515 GeV. Complete angular distributions were obtained and are compared to recent phenomenological models. The σLT(π+n)\sigma_{LT^\prime}(\pi^+ n) channel shows a large sensitivity to the Roper resonance multipoles M1M_{1-} and S1S_{1-} and provides new constraints on models of resonance formation.Comment: 5 pages, 3 figures. Revised manuscript accepted by Physical Review C (Brief Report

    Separated Structure Functions for the Exclusive Electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 Final States

    Full text link
    We report measurements of the exclusive electroproduction of K+ΛK^+\Lambda and K+Σ0K^+\Sigma^0 final states from a proton target using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The separated structure functions σT\sigma_T, σL\sigma_L, σTT\sigma_{TT}, and σLT\sigma_{LT} were extracted from the Φ\Phi- and ϵ\epsilon-dependent differential cross sections taken with electron beam energies of 2.567, 4.056, and 4.247 GeV. This analysis represents the first σL/σT\sigma_L/\sigma_T separation with the CLAS detector, and the first measurement of the kaon electroproduction structure functions away from parallel kinematics. The data span a broad range of momentum transfers from 0.5Q22.80.5\leq Q^2\leq 2.8 GeV2^2 and invariant energy from 1.6W2.41.6\leq W\leq 2.4 GeV, while spanning nearly the full center-of-mass angular range of the kaon. The separated structure functions reveal clear differences between the production dynamics for the Λ\Lambda and Σ0\Sigma^0 hyperons. These results provide an unprecedented data sample with which to constrain current and future models for the associated production of strangeness, which will allow for a better understanding of the underlying resonant and non-resonant contributions to hyperon production.Comment: 61 pages, 26 figures, 5 table

    Chitosan and sodium alginate—Based bioadhesive vaginal tablets

    No full text
    Metronidazole was formulated in mucoadhesive vaginal tablets by directly compressing the natural cationic polymer chitosan, loosely cross-linked with glutaraldehyde, together with sodium alginate with or ine cellulose (MCC). Sodium carboxymethylcellulose (CMC) was added to some of the formulations. The drug content in tablets was 20%. Drug dissolution rate studies from tablets were carried out in buffer pH 4.8 and distilled water. Swelling indices and adhesion forces were also measured for all formulations. The formula (FIII) containing 6% chitosan, 24% sodium alginate, 30% sodium CMC, and 20% MCC showed adequate release properties in both media and gave lower values of swelling index compared with the other examined formulations. FIII also proved to have good adhesion properties with minimum applied weights. Moreover, its release properties (% dissolution efficiency, DE) in buffer pH 4.8, as well as release mechanism (n values), were negligibly affected by aging. Thus, this formula may be considered a good candidate for vaginal mucoadhesive dosage forms
    corecore