770 research outputs found

    Life history and chemical ecology of the Warrior wasp Synoeca septentrionalis (Hymenoptera : Vespidae, Epiponini)

    Get PDF
    Swarm-founding ‘Warrior wasps’ (Synoeca spp.) are found throughout the tropical regions of South America, are much feared due to their aggressive nest defence and painful sting. There are only five species of Synoeca, all construct distinctive nests that consist of a single sessile comb built onto the surface of a tree or rock face, which is covered by a ribbed envelope. Although locally common, research into this group is just starting. We studied eight colonies of Synoeca septentrionalis, a species recently been described from Brazil. A new colony is established by a swarm of 52 to 140 adults that constructs a colony containing around 200 brood cells. The largest colony collected containing 865 adults and over 1400 cells. The number of queen’s present among the eight colonies varied between 3 and 58 and no clear association between colony development and queen number was detected. Workers and queens were morphologically indistinguishable, but differences in their cuticular hydrocarbons were detected, particularly in their (Z)-9-alkenes. The simple cuticular profile, multiple queens, large size and small number of species makes the ‘Warrior wasps’ an excellent model group for further chemical ecology studies of swarm-founding wasps

    HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators

    Get PDF
    WCCoCr coatings deposited by HVOF can replace hard Cr on landing gear components. Powders with two different WC particle sizes (micro and nano-) and geometries have been employed to study the effects on the coating’s properties. Moreover, coatings produced employing two sets of parameters resulting in high and low flame temperatures have been evaluated. Minor differences in microstructure and morphology were observed for the two powders employing the same spraying parameters, but the nano-sized powder exhibited a higher spraying efficiency. However, more significant microstructural changes result when the low- and high-energy spray parameters are used. Moreover, results of various tests which include adhesion, wear, salt fog corrosion resistance, liquid immersion, and axial fatigue strength, indicate that the coatings produced with high-energy flame are similar in behavior. On the other hand, the nanostructured low-energy flame coating exhibited a significantly lower salt fog corrosion resistanc

    Transcription of toll-like receptors 2, 3, 4 and 9, FoxP3 and Th17 cytokines in a susceptible experimental model of canine Leishmania infantum infection

    Get PDF
    Canine leishmaniosis (CanL) due to Leishmania infantum is a chronic zoonotic systemic disease resulting from complex interactions between protozoa and the canine immune system. Toll-like receptors (TLRs) are essential components of the innate immune system and facilitate the early detection of many infections. However, the role of TLRs in CanL remains unknown and information describing TLR transcription during infection is extremely scarce. The aim of this research project was to investigate the impact of L. infantum infection on canine TLR transcription using a susceptible model. The objectives of this study were to evaluate transcription of TLRs 2, 3, 4 and 9 by means of quantitative reverse transcription polymerase chain reaction (qRT-PCR) in skin, spleen, lymph node and liver in the presence or absence of experimental L. infantum infection in Beagle dogs. These findings were compared with clinical and serological data, parasite densities in infected tissues and transcription of IL-17, IL-22 and FoxP3 in different tissues in non-infected dogs (n = 10), and at six months (n = 24) and 15 months (n = 7) post infection. Results revealed significant down regulation of transcription with disease progression in lymph node samples for TLR3, TLR4, TLR9, IL-17, IL-22 and FoxP3. In spleen samples, significant down regulation of transcription was seen in TLR4 and IL-22 when both infected groups were compared with controls. In liver samples, down regulation of transcription was evident with disease progression for IL-22. In the skin, upregulation was seen only for TLR9 and FoxP3 in the early stages of infection. Subtle changes or down regulation in TLR transcription, Th17 cytokines and FoxP3 are indicative of the silent establishment of infection that Leishmania is renowned for. These observations provide new insights about TLR transcription, Th17 cytokines and Foxp3 in the liver, spleen, lymph node and skin in CanL and highlight possible markers of disease susceptibility in this model

    Emissions generated by sugarcane burning promote genotoxicity in rural workers: a case study in Barretos, Brazil

    Get PDF
    Background: To determine the possible genotoxic effect of exposure to the smoke generated by biomass burning on workers involved in manual sugar cane harvesting. Methods: The frequency of micronuclei in exfoliated buccal cells and peripheral blood lymphocytes was determined in sugarcane workers in the Barretos region of Brazil, during the harvest season and compared to a control population, comprised of administrative employees of Barretos Cancer Hospital. Results: The frequency of micronuclei was higher in the sugar cane workers. The mean frequency in blood lymphocytes (micronuclei/1000 cells) in the test group was 8.22 versus 1.27 in the control group. The same effect was observed when exfoliated buccal cells were considered (22.75 and 9.70 micronuclei/1000 cells for sugar cane workers and controls, respectively). Conclusion: Exposure to emissions produced by the burning of sugar cane during harvesting induces genomic instability in workers, indicating the necessity of adopting more advanced techniques of harvesting sugar cane to preserve human health.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis. We thank Oliveira R. for technical support, and we acknowledge financial support from FAPESP Proc. 2010/10192-6

    Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

    Get PDF
    The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming

    Primary Postnatal Dorsal Root Ganglion Culture from Conventionally Slaughtered Calves

    Get PDF
    Neurological disorders in ruminants have an important impact on veterinary health, but very few host-specific in vitro models have been established to study diseases affecting the nervous system. Here we describe a primary neuronal dorsal root ganglia (DRG) culture derived from calves after being conventionally slaughtered for food consumption. The study focuses on the in vitro characterization of bovine DRG cell populations by immunofluorescence analysis. The effects of various growth factors on neuron viability, neurite outgrowth and arborisation were evaluated by morphological analysis. Bovine DRG neurons are able to survive for more than 4 weeks in culture. GF supplementation is not required for neuronal survival and neurite outgrowth. However, exogenously added growth factors promote neurite outgrowth. DRG cultures from regularly slaughtered calves represent a promising and sustainable host specific model for the investigation of pain and neurological diseases in bovines

    Emerging infectious disease implications of invasive mammalian species : the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland

    Get PDF
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira

    Vitamin D deficiency causes inward hypertrophic remodeling and alters vascular reactivity of rat cerebral arterioles

    Get PDF
    BACKGROUND AND PURPOSE: Vitamin D deficiency (VDD) is a global health problem, which can lead to several pathophysiological consequences including cardiovascular diseases. Its impact on the cerebrovascular system is not well understood. The goal of the present work was to examine the effects of VDD on the morphological, biomechanical and functional properties of cerebral arterioles. METHODS: Four-week-old male Wistar rats (n = 11 per group) were either fed with vitamin D deficient diet or received conventional rat chow with per os vitamin D supplementation. Cardiovascular parameters and hormone levels (testosterone, androstenedione, progesterone and 25-hydroxyvitamin D) were measured during the study. After 8 weeks of treatment anterior cerebral artery segments were prepared and their morphological, biomechanical and functional properties were examined using pressure microangiometry. Resorcin-fuchsin and smooth muscle actin staining were used to detect elastic fiber density and smooth muscle cell counts in the vessel wall, respectively. Sections were immunostained for eNOS and COX-2 as well. RESULTS: VDD markedly increased the wall thickness, the wall-to-lumen ratio and the wall cross-sectional area of arterioles as well as the number of smooth muscle cells in the tunica media. As a consequence, tangential wall stress was significantly lower in the VDD group. In addition, VDD increased the myogenic as well as the uridine 5'-triphosphate-induced tone and impaired bradykinin-induced relaxation. Decreased eNOS and increased COX-2 expression were also observed in the endothelium of VDD animals. CONCLUSIONS: VDD causes inward hypertrophic remodeling due to vascular smooth muscle cell proliferation and enhances the vessel tone probably because of increased vasoconstrictor prostanoid levels in young adult rats. In addition, the decreased eNOS expression results in endothelial dysfunction. These morphological and functional alterations can potentially compromise the cerebral circulation and lead to cerebrovascular disorders in VDD
    corecore