6,784 research outputs found

    Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index

    Get PDF
    The study presents a methodology to characterise short- or long-term drought events, designed to aid understanding of how climate change may affect future risk. An indicator of drought magnitude, combining parameters of duration, spatial extent and intensity, is presented based on the Standardised Precipitation Index (SPI). The SPI is applied to observed (1955–2003) and projected (2003–2050) precipitation data from the Community Integrated Assessment System (CIAS). Potential consequences of climate change on drought regimes in Australia, Brazil, China, Ethiopia, India, Spain, Portugal and the USA are quantified. Uncertainty is assessed by emulating a range of global circulation models to project climate change. Further uncertainty is addressed through the use of a high-emission scenario and a low stabilisation scenario representing a stringent mitigation policy. Climate change was shown to have a larger effect on the duration and magnitude of long-term droughts, and Australia, Brazil, Spain, Portugal and the USA were highlighted as being particularly vulnerable to multi-year drought events, with the potential for drought magnitude to exceed historical experience. The study highlights the characteristics of drought which may be more sensitive under climate change. For example, on average, short-term droughts in the USA do not become more intense but are projected to increase in duration. Importantly, the stringent mitigation scenario had limited effect on drought regimes in the first half of the twenty-first century, showing that adaptation to drought risk will be vital in these regions

    Heat dissipation in atomic-scale junctions

    Full text link
    Atomic and single-molecule junctions represent the ultimate limit to the miniaturization of electrical circuits. They are also ideal platforms to test quantum transport theories that are required to describe charge and energy transfer in novel functional nanodevices. Recent work has successfully probed electric and thermoelectric phenomena in atomic-scale junctions. However, heat dissipation and transport in atomic-scale devices remain poorly characterized due to experimental challenges. Here, using custom-fabricated scanning probes with integrated nanoscale thermocouples, we show that heat dissipation in the electrodes of molecular junctions, whose transmission characteristics are strongly dependent on energy, is asymmetric, i.e. unequal and dependent on both the bias polarity and the identity of majority charge carriers (electrons vs. holes). In contrast, atomic junctions whose transmission characteristics show weak energy dependence do not exhibit appreciable asymmetry. Our results unambiguously relate the electronic transmission characteristics of atomic-scale junctions to their heat dissipation properties establishing a framework for understanding heat dissipation in a range of mesoscopic systems where transport is elastic. We anticipate that the techniques established here will enable the study of Peltier effects at the atomic scale, a field that has been barely explored experimentally despite interesting theoretical predictions. Furthermore, the experimental advances described here are also expected to enable the study of heat transport in atomic and molecular junctions, which is an important and challenging scientific and technological goal that has remained elusive.Comment: supporting information available in the journal web site or upon reques

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure

    Microwave studies of the fractional Josephson effect in HgTe-based Josephson junctions

    Full text link
    The rise of topological phases of matter is strongly connected to their potential to host Majorana bound states, a powerful ingredient in the search for a robust, topologically protected, quantum information processing. In order to produce such states, a method of choice is to induce superconductivity in topological insulators. The engineering of the interplay between superconductivity and the electronic properties of a topological insulator is a challenging task and it is consequently very important to understand the physics of simple superconducting devices such as Josephson junctions, in which new topological properties are expected to emerge. In this article, we review recent experiments investigating topological superconductivity in topological insulators, using microwave excitation and detection techniques. More precisely, we have fabricated and studied topological Josephson junctions made of HgTe weak links in contact with two Al or Nb contacts. In such devices, we have observed two signatures of the fractional Josephson effect, which is expected to emerge from topologically-protected gapless Andreev bound states. We first recall the theoretical background on topological Josephson junctions, then move to the experimental observations. Then, we assess the topological origin of the observed features and conclude with an outlook towards more advanced microwave spectroscopy experiments, currently under development.Comment: Lectures given at the San Sebastian Topological Matter School 2017, published in "Topological Matter. Springer Series in Solid-State Sciences, vol 190. Springer

    Expression quantitative trait loci are highly sensitive to cellular differentiation state

    Get PDF
    Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce

    Sensitivity and Specificity of Multiple Kato-Katz Thick Smears and a Circulating Cathodic Antigen Test for Schistosoma mansoni Diagnosis Pre- and Post-repeated-Praziquantel Treatment

    Get PDF
    Two Kato-Katz thick smears (Kato-Katzs) from a single stool are currently recommended for diagnosing Schistosoma mansoni infections to map areas for intervention. This ‘gold standard’ has low sensitivity at low infection intensities. The urine point-of-care circulating cathodic antigen test (POC-CCA) is potentially more sensitive but how accurately they detect S. mansoni after repeated praziquantel treatments, their suitability for measuring drug efficacy and their correlation with egg counts remain to be fully understood. We compared the accuracies of one to six Kato-Katzs and one POC-CCA for the diagnosis of S. mansoni in primary-school children who have received zero to ten praziquantel treatments. We determined the impact each diagnostic approach may have on monitoring and evaluation (M&E) and drug-efficacy findings

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    Set optimization - a rather short introduction

    Full text link
    Recent developments in set optimization are surveyed and extended including various set relations as well as fundamental constructions of a convex analysis for set- and vector-valued functions, and duality for set optimization problems. Extensive sections with bibliographical comments summarize the state of the art. Applications to vector optimization and financial risk measures are discussed along with algorithmic approaches to set optimization problems

    The small GTPase Rab29 is a common regulator of immune synapse assembly and ciliogenesis

    Get PDF
    Acknowledgements We wish to thank Jorge Galán, Gregory Pazour, Derek Toomre, Giuliano Callaini, Joel Rosenbaum, Alessandra Boletta and Francesco Blasi for generously providing reagents and for productive discussions, and Sonia Grassini for technical assistance. The work was carried out with the financial support of Telethon (GGP11021) and AIRC.Peer reviewedPostprin

    Search for the Decays B^0 -> D^{(*)+} D^{(*)-}

    Full text link
    Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one candidate signal event, with an expected background of 0.022 +/- 0.011 events. This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) = (5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0 -> D^{*+} D^{*-}) D^{*\pm} D^\mp and B^0 -> D^+ D^-, no significant excess of signal above the expected background level is seen, and we calculate the 90% CL upper limits on the branching fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+ D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
    corecore