3,420 research outputs found

    The nature of localization in graphene under quantum Hall conditions

    Full text link
    Particle localization is an essential ingredient in quantum Hall physics [1,2]. In conventional high mobility two-dimensional electron systems Coulomb interactions were shown to compete with disorder and to play a central role in particle localization [3]. Here we address the nature of localization in graphene where the carrier mobility, quantifying the disorder, is two to four orders of magnitude smaller [4,5,6,7,8,9,10]. We image the electronic density of states and the localized state spectrum of a graphene flake in the quantum Hall regime with a scanning single electron transistor [11]. Our microscopic approach provides direct insight into the nature of localization. Surprisingly, despite strong disorder, our findings indicate that localization in graphene is not dominated by single particle physics, but rather by a competition between the underlying disorder potential and the repulsive Coulomb interaction responsible for screening.Comment: 18 pages, including 5 figure

    Diagnosing Causes of Water Scarcity in Complex Water Resources Systems and Identifying Risk Management Actions

    Get PDF
    From the water management perspective, water scarcity is an unacceptable risk of facing water shortages to serve water demands in the near future. Water scarcity may be temporary and related to drought conditions or other accidental situation, or may be permanent and due to deeper causes such as excessive demand growth, lack of infrastructure for water storage or transport, or constraints in water management. Diagnosing the causes of water scarcity in complex water resources systems is a precondition to adopt effective drought risk management actions. In this paper we present four indices which have been developed to evaluate water scarcity. We propose a methodology for interpretation of index values that can lead to conclusions about the reliability and vulnerability of systems to water scarcity, as well as to diagnose their possible causes and to propose solutions. The described methodology was applied to the Ebro river basin, identifying existing and expected problems and possible solutions. System diagnostics, based exclusively on the analysis of index values, were compared with the known reality as perceived by system managers, validating the conclusions in all case

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Spectral weight transfer in a disorder-broadened Landau level

    Full text link
    In the absence of disorder, the degeneracy of a Landau level (LL) is N=BA/ϕ0N=BA/\phi_0, where BB is the magnetic field, AA is the area of the sample and ϕ0=h/e\phi_0=h/e is the magnetic flux quantum. With disorder, localized states appear at the top and bottom of the broadened LL, while states in the center of the LL (the critical region) remain delocalized. This well-known phenomenology is sufficient to explain most aspects of the Integer Quantum Hall Effect (IQHE) [1]. One unnoticed issue is where the new states appear as the magnetic field is increased. Here we demonstrate that they appear predominantly inside the critical region. This leads to a certain ``spectral ordering'' of the localized states that explains the stripes observed in measurements of the local inverse compressibility [2-3], of two-terminal conductance [4], and of Hall and longitudinal resistances [5] without invoking interactions as done in previous work [6-8].Comment: 5 pages 3 figure

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors

    Get PDF
    Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects

    The stellar halo of the Galaxy

    Get PDF
    Stellar halos may hold some of the best preserved fossils of the formation history of galaxies. They are a natural product of the merging processes that probably take place during the assembly of a galaxy, and hence may well be the most ubiquitous component of galaxies, independently of their Hubble type. This review focuses on our current understanding of the spatial structure, the kinematics and chemistry of halo stars in the Milky Way. In recent years, we have experienced a change in paradigm thanks to the discovery of large amounts of substructure, especially in the outer halo. I discuss the implications of the currently available observational constraints and fold them into several possible formation scenarios. Unraveling the formation of the Galactic halo will be possible in the near future through a combination of large wide field photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes. Full-resolution version available at http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Observation of Electron-Hole Puddles in Graphene Using a Scanning Single Electron Transistor

    Full text link
    The electronic density of states of graphene is equivalent to that of relativistic electrons. In the absence of disorder or external doping the Fermi energy lies at the Dirac point where the density of states vanishes. Although transport measurements at high carrier densities indicate rather high mobilities, many questions pertaining to disorder remain unanswered. In particular, it has been argued theoretically, that when the average carrier density is zero, the inescapable presence of disorder will lead to electron and hole puddles with equal probability. In this work, we use a scanning single electron transistor to image the carrier density landscape of graphene in the vicinity of the neutrality point. Our results clearly show the electron-hole puddles expected theoretically. In addition, our measurement technique enables to determine locally the density of states in graphene. In contrast to previously studied massive two dimensional electron systems, the kinetic contribution to the density of states accounts quantitatively for the measured signal. Our results suggests that exchange and correlation effects are either weak or have canceling contributions.Comment: 13 pages, 5 figure
    corecore