72 research outputs found

    Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to 20×102120\times10^{21} POT

    Get PDF
    18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figures18 pages, 4 figuresRecent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of 7.8×10217.8\times 10^{21} protons-on-target to 20×102120\times 10^{21} protons-on-target,aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.We acknowledge the support of MEXT, Japan; NSERC (Grant No. SAPPJ-2014-00031), NRC and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SERI, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, and GridPP in the United Kingdom. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), H2020 Grant No. RISE-GA644294-JENNIFER, EU; JSPS, Japan; Royal Society, UK; and the DOE Early Career program, USA. CNRS/IN2P3: Centre National de la Recherche ScientifiqueInstitut National de Physique Nucleaire et de Physique des Particules RSF: Russian Science Foundation MES: Ministry of Education and Science, Russia ERDF: European Regional Development Fund SNSF: Swiss National Science Foundation SER (should be SERI): State Secretariat for Education, Research and Innovatio

    Proposal for an Extended Run of T2K to 20×102120\times10^{21} POT

    Get PDF
    68 pages, 31 figures68 pages, 31 figures68 pages, 31 figuresRecent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from 7.8\times 10^{21}~\mbox{POT} to 20\times 10^{21}~\mbox{POT}, aiming at initial observation of CP violation with 3σ\,\sigma or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, θ23\theta_{23} and Δm322\Delta m^2_{32}, with a precision of 1.7^\circ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026

    First Measurement of the Muon Neutrino Charged Current Single Pion Production Cross Section on Water with the T2K Near Detector

    Get PDF
    The T2K off-axis near detector, ND280, is used to make the first differential cross section measurements of muon neutrino charged current single positive pion production on a water target at energies 0.8{\sim}0.8 GeV. The differential measurements are presented as a function of muon and pion kinematics, in the restricted phase-space defined by pπ+>200p_{\pi^+}>200MeV/c, pμ>200p_{\mu^-}>200MeV/c, cosθπ+>0.3\cos \theta_{\pi^+}>0.3 and cosθμ>0.3\cos \theta_{\mu^-}>0.3. The total flux integrated νμ\nu_\mu charged current single positive pion production cross section on water in the restricted phase-space is measured to be σϕ=4.25±0.48(stat)±1.56(syst)×1040cm2/nucleon\langle\sigma\rangle_\phi=4.25\pm0.48 (\mathrm{stat})\pm1.56 (\mathrm{syst})\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}. The total cross section is consistent with the NEUT prediction (5.03×1040cm2/nucleon5.03\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}) and 2σ\sigma lower than the GENIE prediction (7.68×1040cm2/nucleon7.68\times10^{-40} \mathrm{cm}^{2}/\mathrm{nucleon}). The differential cross sections are in good agreement with the NEUT generator. The GENIE simulation reproduces well the shapes of the distributions, but over-estimates the overall cross section normalization

    Patient and public involvement in designing and conducting doctoral research: the whys and the hows

    Get PDF
    YesPublic and patient involvement (PPI) has been shown to have a positive impact on health and social care research. However, adequate examples describing how to operationalise effective PPI, especially in doctoral studies, are lacking. Hence, doctoral researchers new to research, or those with limited experience, can be discouraged from facilitating PPI in their research. This paper aims to describe and discuss in detail the approaches used by four doctoral researchers to incorporate PPI at different stages of their research studies from study design to disseminating findings. We aim to inform other doctoral researchers about the challenges and limitations relating to PPI that we faced. Through these, we share pragmatic recommendations for facilitating PPI during doctoral studies. The description of four case studies demonstrated that PPI could be incorporated at various stages during doctoral research. This has had a beneficial impact on our research study progression, researcher self-esteem and lastly, helped alleviate researcher isolation during doctoral studies.Supported by Research Design Service Yorkshire and the Humber (RDSYH), the National Institute for Health Research (NIHR) Yorkshire and Humber Patient Safety Translational Research Centre (NIHR Yorkshire and Humber PSTRC). This paper presents independent research funded by NIHR under its Research for Patient Benefit (RfPB) Programme (Grant Reference Number PB-PG-0317-20010).Research Development Fund Publication Prize Award winner, July 2019

    Attentional Processing of Food Cues in Overweight and Obese Individuals

    Get PDF
    The incentive sensitization model of obesity hypothesizes that obese individuals in the western world have acquired an enhanced attention bias to food cues, because of the overwhelming exposure to food. This article gives an overview of recent studies regarding attention to food and obesity. In general, an interesting approach-avoidance pattern in food-related attention has been found in overweight/obese individuals in a number of studies. However, it should be noted that study results are contradictory. This might be due to methodological issues, such as the choice of attention measurements, possibly tapping different underlying components of information processing. Although attention research is challenging, researchers are encouraged to further explore important issues, such as the exact circumstances in which obese persons demonstrate enhanced attention to food, the directional relationship between food-related attention bias, overeating and weight gain, and the underlying involvement of the reward system. Knowledge on these issues could help improve treatment programs

    Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

    Get PDF
    A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.Coordinated Research Projects CGL2010-20748-C02-01 (AGC, EMH) and 02 (CS) (DGI, Spanish MICINN); the Research Group RNM363 (Consejería de Economía, Investigación, Ciencia y Empleo, Junta de Andalucía); and the FP7 COST Action TD0903 of the European Community

    Measurement of muon antineutrino oscillations with an accelerator-produced off-axis beam

    Get PDF
    T2K reports its first measurements of the parameters governing the disappearance of ν-μ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν-μ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν-μ survival probability is expected to be minimal. Using a data set corresponding to 4.01×1020 protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin2(θ-23)=0.45 and |Δm-322|=2.51×10-3 eV2 with 68% confidence intervals of 0.38-0.64 and 2.26-2.80×10-3 eV2, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νμ disappearance parameters measured by T2K

    Measurement of the single pi(0) production rate in neutral current neutrino interactions on water

    Get PDF
    The single π0 production rate in neutral current neutrino interactions on water in a neutrino beam with a peak neutrino energy of 0.6 GeV has been measured using the PØD, one of the subdetectors of the T2K near detector. The production rate was measured for data taking periods when the PØD contained water (2.64×10(20) protons-on-target) and also periods without water (3.49×10(20) protons-on-target). A measurement of the neutral current single π0 production rate on water is made using appropriate subtraction of the production rate with water in from the rate with water out of the target region. The subtraction analysis yields 106 ± 41 ± 69 signal events where the uncertainties are statistical (stat.) and systematic (sys.) respectively. This is consistent with the prediction of 157 events from the nominal simulation. The measured to expected ratio is 0.68 ± 0.26 (stat) ± 0.44 (sys) ± 0.12 (flux). The nominal simulation uses a flux integrated cross section of 7.63×10(−39)cm(2) per nucleon with an average neutrino interaction energy of 1.3 GeV
    corecore