1,657 research outputs found
Quantum bath refrigeration towards absolute zero: unattainability principle challenged
A minimal model of a quantum refrigerator (QR), i.e. a periodically
phase-flipped two-level system permanently coupled to a finite-capacity bath
(cold bath) and an infinite heat dump (hot bath), is introduced and used to
investigate the cooling of the cold bath towards the absolute zero (T=0).
Remarkably, the temperature scaling of the cold-bath cooling rate reveals that
it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons
in strongly disordered media (fractons) or quantized spin-waves in ferromagnets
(magnons). This result challenges Nernst's third-law formulation known as the
unattainability principle
Entropy and Its Quantum Thermodynamical Implication for Anomalous Spectral Systems
The state function entropy and its quantum thermodynamical implication for
two typical dissipative systems with anomalous spectral densities are studied
by investigating on their low-temperature quantum behavior. In all cases it is
found that the entropy decays quickly and vanishes as the temperature
approaches zero. This reveals a good conformity with the third law of
thermodynamics and provides another evidence for the validity of fundamental
thermodynamical laws in the quantum dissipative region.Comment: 10 pages, 3 figure
Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator
There is recently a surge of interest to cut down the time it takes to change
the state of a quantum system adiabatically. We study for the time-dependent
harmonic oscillator the transient energy excitation in speed-up processes
designed to reproduce the initial populations at some predetermined final
frequency and time, providing lower bounds and examples. Implications for the
limits imposed to the process times and for the principle of unattainability of
the absolute zero, in a single expansion or in quantum refrigerator cycles, are
drawn.Comment: 7 pages, 6 figure
Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit
We revisit the relationship between the Nernst theorem and the Kelvin-Planck
statement of the second law. We propose that the exchange of entropy uniformly
vanishes as the temperature goes to zero. The analysis of this assumption shows
that is equivalent to the fact that the compensation of a Carnot engine scales
with the absorbed heat so that the Nernst theorem should be embedded in the
statement of the second law.
-----
Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de
Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el
hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la
temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es
equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot
escala con el calor absorbido del foco caliente, de forma que el teorema de
Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into
spanish. Twocolumn format. RevTe
Spacetime and vacuum as seen from Moscow
An extended text of the talk given at the conference ``2001: A Spacetime
Odyssey'', to be published in the Proceedings of the Inaugural Conference of
the Michigan Center for Theoretical Physics, University of Michigan, Ann Arbor,
21-25 May 2001, M.J. Duff and J.T. Liu eds., World Scientific, Singapore, 2002;
and of Historical Lecture ``Vacuum as seen from Moscow'' at the CERN Summer
School, 10 August, 2001. Contents: Introduction; Pomeranchuk on vacuum; Landau
on parity, P, and combined parity, CP; Search and discovery of ; "Mirror world"; Zeldovich and cosmological term; QCD vacuum
condensates; Sakharov and baryonic asymmetry of the universe, BAU; Kirzhnits
and phase transitions; Vacuum domain walls; Monopoles, strings, instantons, and
sphalerons; False vacuum; Inflation; Brane and Bulk; Acknowledgments;
References.Comment: 17 pages, 2 figure
Electronic thermal transport in strongly correlated multilayered nanostructures
The formalism for a linear-response many-body treatment of the electronic
contributions to thermal transport is developed for multilayered
nanostructures. By properly determining the local heat-current operator, it is
possible to show that the Jonson-Mahan theorem for the bulk can be extended to
inhomogeneous problems, so the various thermal-transport coefficient integrands
are related by powers of frequency (including all effects of vertex corrections
when appropriate). We illustrate how to use this formalism by showing how it
applies to measurements of the Peltier effect, the Seebeck effect, and the
thermal conductance.Comment: 17 pages, 4 figures, submitted to Phys. Rev.
Notes on the Third Law of Thermodynamics.I
We analyze some aspects of the third law of thermodynamics. We first review
both the entropic version (N) and the unattainability version (U) and the
relation occurring between them. Then, we heuristically interpret (N) as a
continuity boundary condition for thermodynamics at the boundary T=0 of the
thermodynamic domain. On a rigorous mathematical footing, we discuss the third
law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's
approach is fundamental in order to understand the nature of the surface T=0.
In fact, in this approach, under suitable mathematical conditions, T=0 appears
as a leaf of the foliation of the thermodynamic manifold associated with the
non-singular integrable Pfaffian form . Being a leaf, it cannot
intersect any other leaf const. of the foliation. We show that (N) is
equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the
peculiar nature of T=0 appears to be less evident because the existence of the
entropy is a postulate; nevertheless, it is still possible to conclude that the
lowest value of the entropy has to belong to the boundary of the convex set
where the function is defined.Comment: 29 pages, 2 figures; RevTex fil
Diffuse-Charge Dynamics in Electrochemical Systems
The response of a model micro-electrochemical system to a time-dependent
applied voltage is analyzed. The article begins with a fresh historical review
including electrochemistry, colloidal science, and microfluidics. The model
problem consists of a symmetric binary electrolyte between parallel-plate,
blocking electrodes which suddenly apply a voltage. Compact Stern layers on the
electrodes are also taken into account. The Nernst-Planck-Poisson equations are
first linearized and solved by Laplace transforms for small voltages, and
numerical solutions are obtained for large voltages. The ``weakly nonlinear''
limit of thin double layers is then analyzed by matched asymptotic expansions
in the small parameter , where is the
screening length and the electrode separation. At leading order, the system
initially behaves like an RC circuit with a response time of
(not ), where is the ionic diffusivity, but nonlinearity
violates this common picture and introduce multiple time scales. The charging
process slows down, and neutral-salt adsorption by the diffuse part of the
double layer couples to bulk diffusion at the time scale, . In the
``strongly nonlinear'' regime (controlled by a dimensionless parameter
resembling the Dukhin number), this effect produces bulk concentration
gradients, and, at very large voltages, transient space charge. The article
concludes with an overview of more general situations involving surface
conduction, multi-component electrolytes, and Faradaic processes.Comment: 10 figs, 26 pages (double-column), 141 reference
Quantum vacuum fluctuations
The existence of irreducible field fluctuations in vacuum is an important
prediction of quantum theory. These fluctuations have many observable
consequences, like the Casimir effect which is now measured with good accuracy
and agreement with theory, provided that the latter accounts for differences
between real experiments and the ideal situation considered by Casimir. But the
vacuum energy density calculated by adding field mode energies is much larger
than the density observed around us through gravitational phenomena. This
``vacuum catastrophe'' is one of the unsolved problems at the interface between
quantum theory on one hand, inertial and gravitational phenomena on the other
hand. It is however possible to put properly formulated questions in the
vicinity of this paradox. These questions are directly connected to observable
effects bearing upon the principle of relativity of motion in quantum vacuum.Comment: 8 pages, 2 figures, contribution to a special issue in CRAS (Comptes
rendus de l'Academie des Sciences), corrected typos, added reference
Water seepage beneath dams on soluble evaporite deposits: a laboratory and field study (Caspe Dam, Spain)
The paper presents analytical methods and results for assessing the variation in the concentration of sulphate (and other ions) over space and time in groundwater flowing through a soluble evaporite terrain beneath a dam. The influence of effective porosity, groundwater flow velocity and the specific rate of dissolution (K′) are considered. The theoretical analysis was tested in a scale model simulating a dam constructed on heavily karstified bedrock. A simple and useful method for assessing how much material is lost through dissolution and how the rate of dissolution changes over time is considered in the context of the Caspe Dam, Spain
- …
