123 research outputs found
Parallel Mechanisms for Visual Search in Zebrafish
This research was funded by project grant G1000053 from the National Centre for the Replacement, Reduction and Refinement of animals in research (NC3Rs; UK) and by the Medical Research Council (MRC; UK). CHB is a Royal Society (UK) Research Fellow
Sustained Action of Developmental Ethanol Exposure on the Cortisol Response to Stress in Zebrafish Larvae and Adults
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThis study was supported by the National Centre for the replacement, refinement and reduction of animals in research
Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish
Manganese neurotoxicity is a hallmark of Hypermanganesemia with Dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity we performed transcriptome analysis of slc39a14-/- mutant zebrafish unexposed and exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that calcium dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole animal calcium levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with calcium dyshomeostasis and cellular stress
Illusionary Self-Motion Perception in Zebrafish
Zebrafish mutant belladonna (bel) carries a mutation in the lhx2 gene (encoding a Lim domain homeobox transcription factor) that results in a defect in retinotectal axon pathfinding, which can lead to uncrossed optic nerves failing to form an optic chiasm. Here, we report on a novel swimming behavior of the bel mutants, best described as looping. Together with two previously reported oculomotor instabilities that have been related to achiasmatic bel mutants, reversed optokinetic response (OKR) and congenital nystagmus (CN, involuntary conjugate oscillations of both eyes), looping opens a door to study the influence of visual input and eye movements on postural balance. Our result shows that looping correlates perfectly with reversed OKR and CN and is vision-dependent and contrast sensitive. CN precedes looping and the direction of the CN slow phase is predictive of the looping direction, but is absent during looping. Therefore, looping may be triggered by CN in bel. Moreover, looping in wild-type fish can also be evoked by whole-field motion, suggesting that looping in a bel mutant larvae is a result of self-motion perception. In contrary to previous hypotheses, our findings indicate that postural control in vertebrates relies on both direct visual input (afference signal) and eye-movement-related signals (efference copy or reafference signal)
Current distribution of Achatina fulica, in the State of São Paulo including records of Aelurostrongylus abstrusus (Nematoda) larvae infestation
The currently known distribution range of Achatina fulica Bowdich, 1822, in the state of São Paulo, Brazil, is presented. The record of A. fulica naturally infested with Aelurostrongylus abstrusus larvae (Railliet, 1898) (Nematoda: Metastrongylidae) can be found in the city of Guaratinguetá. It was found A. fulica with Metastrongylidae larvae without known medical and veterinary importance in the cities of Carapicuíba, Embu-Guaçu, Itapevi, São Caetano do Sul, São Paulo and Taboão da Serra.É apresentada a distribuição de Achatina fulica Bowdich, 1822 no Estado de São Paulo, Brasil. É fornecido o registro de A. fulica naturalmente infestada por larvas de Aelurostrongylus abstrusus (Railliet, 1898) (Nematoda: Metastrongylidae) no município de Guaratinguetá. Foi encontrada A. fulica portando larvas de Metastrongylidae sem importância médica e veterinária conhecida nos municípios de Carapicuíba, Embu Guaçu, Itapevi, São Caetano do Sul, São Paulo e Taboão da Serra
ARMC9 and TOGARAM1 define a Joubert syndrome-associated protein module that regulates axonemal post-translational modifications and cilium stability
Joubert syndrome (JBTS) is a recessive neurodevelopmental ciliopathy, characterized by a pathognomonic hindbrain malformation. All known JBTS-genes encode proteins involved in the structure or function of primary cilia, ubiquitous antenna-like organelles essential for cellular signal transduction. Here, we use the recently identified JBTS-associated protein ARMC9 in tandem-affinity purification and yeast two-hybrid screens to identify a novel ciliary module composed of ARMC9-TOGARAM1-CCDC66-CEP104- CSPP1. TOGARAM1-variants cause JBTS and disrupt its interaction with ARMC9. Using a combination of protein interaction analyses and characterization of patient-derived fibroblasts, CRISPR/Cas9-engineered zebrafish and hTERT-RPE1 cells, we demonstrate that dysfunction of ARMC9 or TOGARAM1 results in short cilia with decreased axonemal acetylation and glutamylation, but relatively intact transition zone function. Aberrant serum-induced ciliary resorption and cold-induced depolymerization in both ARMC9 and TOGARAM1 patient cells lines suggest a role for this new JBTS-associated protein complex in ciliary stability
Functional MRI in Awake Unrestrained Dogs
Because of dogs' prolonged evolution with humans, many of the canine cognitive skills are thought to represent a selection of traits that make dogs particularly sensitive to human cues. But how does the dog mind actually work? To develop a methodology to answer this question, we trained two dogs to remain motionless for the duration required to collect quality fMRI images by using positive reinforcement without sedation or physical restraints. The task was designed to determine which brain circuits differentially respond to human hand signals denoting the presence or absence of a food reward. Head motion within trials was less than 1 mm. Consistent with prior reinforcement learning literature, we observed caudate activation in both dogs in response to the hand signal denoting reward versus no-reward
Low susceptibility of Achatina fulica from Brazil to infection with Angiostrongylus costaricensis and A. cantonensis
Recommended from our members
Large-scale mapping of mutations affecting zebrafish development
BACKGROUND: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers. RESULTS: We have selected a set of microsatellite markers and developed methods and scoring criteria suitable for efficient, high-throughput genome scanning. We have used these methods to successfully obtain a rough map position for 319 mutant loci from the Tübingen I mutagenesis screen and subsequent screening of the mutant collection. For 277 of these the corresponding gene is not yet identified. Mapping was successful for 80 % of the tested loci. By comparing 21 mutation and gene positions of cloned mutations we have validated the correctness of our linkage group assignments and estimated the standard error of our map positions to be approximately 6 cM. CONCLUSION: By obtaining rough map positions for over 300 zebrafish loci with developmental phenotypes, we have generated a dataset that will be useful not only for cloning of the affected genes, but also to suggest allelism of mutations with similar phenotypes that will be identified in future screens. Furthermore this work validates the usefulness of our methodology for rapid, systematic and inexpensive microsatellite mapping of zebrafish mutations
First report of Angiostrongylus cantonensis in Porto Alegre, State of Rio Grande do Sul, Southern Brazil
- …
