793 research outputs found
On small-noise equations with degenerate limiting system arising from volatility models
The one-dimensional SDE with non Lipschitz diffusion coefficient is widely
studied in mathematical finance. Several works have proposed asymptotic
analysis of densities and implied volatilities in models involving instances of
this equation, based on a careful implementation of saddle-point methods and
(essentially) the explicit knowledge of Fourier transforms. Recent research on
tail asymptotics for heat kernels [J-D. Deuschel, P.~Friz, A.~Jacquier, and
S.~Violante. Marginal density expansions for diffusions and stochastic
volatility, part II: Applications. 2013, arxiv:1305.6765] suggests to work with
the rescaled variable : while
allowing to turn a space asymptotic problem into a small- problem
with fixed terminal point, the process satisfies a SDE in
Wentzell--Freidlin form (i.e. with driving noise ). We prove a
pathwise large deviation principle for the process as
. As it will become clear, the limiting ODE governing the
large deviations admits infinitely many solutions, a non-standard situation in
the Wentzell--Freidlin theory. As for applications, the -scaling
allows to derive exact log-asymptotics for path functionals of the process:
while on the one hand the resulting formulae are confirmed by the CIR-CEV
benchmarks, on the other hand the large deviation approach (i) applies to
equations with a more general drift term and (ii) potentially opens the way to
heat kernel analysis for higher-dimensional diffusions involving such an SDE as
a component.Comment: 21 pages, 1 figur
High-throughput mapping of protein occupancy identifies functional elements without the restriction of a candidate factor approach
There are a variety of in vivo and in vitro methods to determine the genome-wide specificity of a particular trans-acting factor. However there is an inherent limitation to these candidate approaches. Most biological studies focus on the regulation of particular genes, which are bound by numerous unknown trans-acting factors. Therefore, most biological inquiries would be better addressed by a method that maps all trans-acting factors that bind particular regions rather than identifying all regions bound by a particular trans-acting factor. Here, we present a high-throughput binding assay that returns thousands of unbiased measurements of complex formation on nucleic acid. We applied this method to identify transcriptional complexes that form on DNA regions upstream of genes involved in pluripotency in embryonic stem cells (ES cells) before and after differentiation. The raw binding scores, motif analysis and expression data are used to computationally reconstruct remodeling events returning the identity of the transcription factor(s) most likely to comprise the complex. The most significant remodeling event during ES cell differentiation occurred upstream of the REST gene, a transcriptional repressor that blocks neurogenesis. We also demonstrate how this method can be used to discover RNA elements and discuss applications of screening polymorphisms for allelic differences in binding
Upregulation of intrarenal angiotensinogen in diabetes
Universidade Federal de São Paulo, Dept Med, Div Nephrol, BR-04023040 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Med, Div Nephrol, BR-04023040 São Paulo, BrazilWeb of Scienc
Giant phonon anomalies and central peak due to charge density wave formation in YBaCuO
The electron-phonon interaction is a major factor influencing the competition
between collective instabilities in correlated-electron materials, but its role
in driving high-temperature superconductivity in the cuprates remains poorly
understood. We have used high-resolution inelastic x-ray scattering to monitor
low-energy phonons in YBaCuO (superconducting
K), which is close to a charge density wave (CDW) instability. Phonons in a
narrow range of momentum space around the CDW ordering vector exhibit extremely
large superconductivity-induced lineshape renormalizations. These results imply
that the electron-phonon interaction has sufficient strength to generate
various anomalies in electronic spectra, but does not contribute significantly
to Cooper pairing. In addition, a quasi-elastic "central peak" due to CDW
nanodomains is observed in a wide temperature range above and below ,
suggesting that the gradual onset of a spatially inhomogeneous CDW domain state
with decreasing temperature is a generic feature of the underdoped cuprates
Lineage Divergence and Historical Gene Flow in the Chinese Horseshoe Bat (Rhinolophus sinicus)
PMCID: PMC3581519This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle
We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D (1)H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models
Enterovirus specific anti-peptide antibodies
Enterovirus 71 (EV-71) is the main causative agent of hand, foot, and mouth disease (HFMD) which is generally regarded as a mild childhood disease. In recent years, EV71 has emerged as a significant pathogen capable of causing high mortalities and severe neurological complications in large outbreaks in Asia. A formalin-inactivated EV71 whole virus vaccine has completed phase III trial in China but is currently unavailable clinically. The high cost of manufacturing and supply problems may limit practical implementations in developing countries. Synthetic peptides representing the native primary structure of the viral immunogen which is able to elicit neutralizing antibodies can be made readily and is cost effective. However, it is necessary to conjugate short synthetic peptides to carrier proteins to enhance their immunogenicity. This review describes the production of cross-neutralizing anti-peptide antibodies in response to immunization with synthetic peptides selected from in silico analysis, generation of B-cell epitopes of EV71 conjugated to a promiscuous T-cell epitope from Poliovirus, and evaluation of the neutralizing activities of the anti-peptide antibodies. Besides neutralizing EV71 in vitro, the neutralizing antibodies were cross-reactive against several Enteroviruses including CVA16, CVB4, CVB6, and ECHO13
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Does computer use pose a hazard for future long-term sickness absence?
The aim of the study was to investigate if weekly duration of computer use predicted sickness absence for more than two weeks at a later time
- …
