813 research outputs found
Ellipsometry noise spectrum, suspension transfer function measurement and closed-loop control of the suspension system in the Q & A experiment
The Q & A experiment, aiming at the detection of vacuum birefringence
predicted by quantum electrodynamics, consists mainly of a suspended 3.5 m
Fabry-Perot cavity, a rotating permanent dipole magnet and an ellipsometer. The
2.3 T magnet can rotate up to 10 rev/s, introducing an ellipticity signal at
twice the rotation frequency. The X-pendulum gives a good isolation ratio for
seismic noise above its main resonant frequency 0.3 Hz. At present, the
ellipsometry noise decreases with frequency, from 1*10^{-5} rad Hz^{-1/2} at 5
Hz, 2*10^{-6} rad Hz^{-1/2} at 20 Hz to 5*10^{-7} rad Hz^{-1/2} at 40 Hz. The
shape of the noise spectrum indicates possible improvement can be made by
further reducing the movement between the cavity mirrors. From the preliminary
result of yaw motion alignment control, it can be seen that some peaks due to
yaw motion of the cavity mirror was suppressed. In this paper, we first give a
schematic view of the Q & A experiment, and then present the measurement of
transfer function of the compound X-pendulum-double pendulum suspension. A
closed-loop control was carried out to verify the validity of the measured
transfer functions. The ellipsometry noise spectra with and without yaw
alignment control and the newest improvement is presented.Comment: 7 pages, 5 figures, presented in 6th Edoardo Amaldi Conference on
Gravitational Waves, June 2005, Okinawa Japan and submitted to Journal of
Physics: Conference Series. Some modifications are made according to the
referee's comments: mainly to explain the relation between the displacement
of cavity mirror and the ellipticity noise spectru
Geometric invariant theory of syzygies, with applications to moduli spaces
We define syzygy points of projective schemes, and introduce a program of
studying their GIT stability. Then we describe two cases where we have managed
to make some progress in this program, that of polarized K3 surfaces of odd
genus, and of genus six canonical curves. Applications of our results include
effectivity statements for divisor classes on the moduli space of odd genus K3
surfaces, and a new construction in the Hassett-Keel program for the moduli
space of genus six curves.Comment: v1: 23 pages, submitted to the Proceedings of the Abel Symposium
2017, v2: final version, corrects a sign error and resulting divisor class
calculations on the moduli space of K3 surfaces in Section 5, other minor
changes, In: Christophersen J., Ranestad K. (eds) Geometry of Moduli.
Abelsymposium 2017. Abel Symposia, vol 14. Springer, Cha
Supramolecular assemblies involving metal organic ring interactions: Heterometallic Cu(II)-Ln(III) two dimensional coordination polymers
Three isostructural two-dimensional coordination polymers of the general formula [Ln2(CuL)3(H2O)9]$5.5H2O, where Ln is La (1), Nd (2), and Gd (3), have been synthesized and isolated from aqueous solutions and their single-crystal structures determined by X-ray diffraction. The supramolecular interaction between the non-aromatic metallorings plays an important role in stabilizing the structure of these compounds. The thermal stability, reversible solvent uptake, electronic properties and magnetic studies of these compounds are also reported
Can the Pioneer anomaly be of gravitational origin? A phenomenological answer
In order to satisfy the equivalence principle, any non-conventional mechanism
proposed to gravitationally explain the Pioneer anomaly, in the form in which
it is presently known from the so-far analyzed Pioneer 10/11 data, cannot leave
out of consideration its impact on the motion of the planets of the Solar
System as well, especially those orbiting in the regions in which the anomalous
behavior of the Pioneer probes manifested itself. In this paper we, first,
discuss the residuals of the right ascension \alpha and declination \delta of
Uranus, Neptune and Pluto obtained by processing various data sets with
different, well established dynamical theories (JPL DE, IAA EPM, VSOP). Second,
we use the latest determinations of the perihelion secular advances of some
planets in order to put on the test two gravitational mechanisms recently
proposed to accommodate the Pioneer anomaly based on two models of modified
gravity. Finally, we adopt the ranging data to Voyager 2 when it encountered
Uranus and Neptune to perform a further, independent test of the hypothesis
that a Pioneer-like acceleration can also affect the motion of the outer
planets of the Solar System. The obtained answers are negative.Comment: Latex2e, 26 pages, 6 tables, 2 figure, 47 references. It is the
merging of gr-qc/0608127, gr-qc/0608068, gr-qc/0608101 and gr-qc/0611081.
Final version to appear in Foundations of Physic
Effect of Dietary Components on Larval Life History Characteristics in the Medfly (Ceratitis capitata: Diptera, Tephritidae)
Background: The ability to respond to heterogenous nutritional resources is an important factor in the adaptive radiation of insects such as the highly polyphagous Medfly. Here we examined the breadth of the Medfly’s capacity to respond to different developmental conditions, by experimentally altering diet components as a proxy for host quality and novelty. Methodology/Principal Findings: We tested responses of larval life history to diets containing protein and carbohydrate components found in and outside the natural host range of this species. A 40% reduction in the quantity of protein caused a significant increase in egg to adult mortality by 26.5%±6% in comparison to the standard baseline diet. Proteins and carbohydrates had differential effects on larval versus pupal development and survival. Addition of a novel protein source, casein (i.e. milk protein), to the diet increased larval mortality by 19.4%±3% and also lengthened the duration of larval development by 1.93±0.5 days in comparison to the standard diet. Alteration of dietary carbohydrate, by replacing the baseline starch with simple sugars, increased mortality specifically within the pupal stage (by 28.2%±8% and 26.2%±9% for glucose and maltose diets, respectively). Development in the presence of the novel carbohydrate lactose (milk sugar) was successful, though on this diet there was a decrease of 29.8±1.6 µg in mean pupal weight in comparison to pupae reared on the baseline diet. Conclusions: The results confirm that laboratory reared Medfly retain the ability to survive development through a wide range of fluctuations in the nutritional environment. We highlight new facets of the responses of different stages of holometabolous life histories to key dietary components. The results are relevant to colonisation scenarios and key to the biology of this highly invasive species
A comparison of substrate oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the coingestion of 13C glucose and 13C fructose
This study compared the effects of co-ingesting glucose and fructose on exogenous and endogenous substrate oxidation during prolonged exercise at altitude and sea level, in men. Seven male British military personnel completed two bouts of cycling at the same relative workload (55% Wmax) for 120 minutes on acute exposure to altitude (3375m) and at sea level (~113m). In each trial, participants ingested 1.2 g.min-1 of glucose (enriched with 13C glucose) and 0.6 g.min-1 of fructose (enriched with 13C fructose) directly before and every 15 minutes during exercise. Indirect calorimetry and isotope ratio mass spectrometry were used to calculate fat oxidation, total and exogenous carbohydrate oxidation, plasma glucose oxidation and endogenous glucose oxidation derived from liver and muscle glycogen. Total carbohydrate oxidation during the exercise period was lower at altitude (157.7±56.3 grams) than sea level (286.5±56.2 grams, P=0.006, ES=2.28), whereas fat oxidation was higher at altitude (75.5±26.8 grams) than sea level (42.5±21.3 grams, P=0.024, ES=1.23). Peak exogenous carbohydrate oxidation was lower at altitude (1.13±0.2 g.min-1) than sea level (1.42±0.16 g.min-1, P=0.034, ES=1.33). There were no differences in rates, or absolute and relative contributions of plasma or liver glucose oxidation between conditions during the second hour of exercise. However, absolute and relative contributions of muscle glycogen during the second hour were lower at altitude (29.3±28.9 grams, 16.6±15.2%) than sea level (78.7±5.2 grams (P=0.008, ES=1.71), 37.7±13.0% (P=0.016, ES=1.45). Acute exposure to altitude reduces the reliance on muscle glycogen and increases fat oxidation during prolonged cycling in men, compared with sea level
"Dark energy" in the Local Void
The unexpected discovery of the accelerated cosmic expansion in 1998 has
filled the Universe with the embarrassing presence of an unidentified "dark
energy", or cosmological constant, devoid of any physical meaning. While this
standard cosmology seems to work well at the global level, improved knowledge
of the kinematics and other properties of our extragalactic neighborhood
indicates the need for a better theory. We investigate whether the recently
suggested repulsive-gravity scenario can account for some of the features that
are unexplained by the standard model. Through simple dynamical considerations,
we find that the Local Void could host an amount of antimatter
() roughly equivalent to the mass of a typical
supercluster, thus restoring the matter-antimatter symmetry. The antigravity
field produced by this "dark repulsor" can explain the anomalous motion of the
Local Sheet away from the Local Void, as well as several other properties of
nearby galaxies that seem to require void evacuation and structure formation
much faster than expected from the standard model. At the global cosmological
level, gravitational repulsion from antimatter hidden in voids can provide more
than enough potential energy to drive both the cosmic expansion and its
acceleration, with no need for an initial "explosion" and dark energy.
Moreover, the discrete distribution of these dark repulsors, in contrast to the
uniformly permeating dark energy, can also explain dark flows and other
recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space
Scienc
Comment on the narrow structure reported by Amaryan et al
The CLAS Collaboration provides a comment on the physics interpretation of
the results presented in a paper published by M. Amaryan et al. regarding the
possible observation of a narrow structure in the mass spectrum of a
photoproduction experiment.Comment: to be published in Physical Review
Coherent Photoproduction of pi^+ from 3^He
We have measured the differential cross section for the
He reaction. This reaction was studied using
the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons
produced with the Hall-B bremsstrahlung tagging system in the energy range from
0.50 to 1.55 GeV were incident on a cryogenic liquid He target. The
differential cross sections for the He
reaction were measured as a function of photon-beam energy and pion-scattering
angle. Theoretical predictions to date cannot explain the large cross sections
except at backward angles, showing that additional components must be added to
the model.Comment: 11 pages, 16 figure
Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0
High-statistics measurements of differential cross sections and recoil
polarizations for the reaction have been
obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass
energies () from 1.69 to 2.84 GeV, with an extensive coverage in the
production angle. Independent measurements were made using the
() and () final-state topologies,
and were found to exhibit good agreement. Our differential cross sections show
good agreement with earlier CLAS, SAPHIR and LEPS results, while offering
better statistical precision and a 300-MeV increase in coverage.
Above GeV, - and -channel Regge scaling behavior
can be seen at forward- and backward-angles, respectively. Our recoil
polarization () measurements represent a substantial increase in
kinematic coverage and enhanced precision over previous world data. At forward
angles we find that is of the same magnitude but opposite sign as
, in agreement with the static SU(6) quark model prediction of
. This expectation is violated in some mid- and
backward-angle kinematic regimes, where and are of
similar magnitudes but also have the same signs. In conjunction with several
other meson photoproduction results recently published by CLAS, the present
data will help constrain the partial wave analyses being performed to search
for missing baryon resonances.Comment: 23 pages, 17 figure
- …
