680 research outputs found
Body image concerns: levels, correlates and gender differences among students in the United Kingdom
AIMS: This cross-sectional study aimed to determine the socio-demographic, lifestyle and well-being variables that are associated with body image concerns (BIC) and whether these associations differed between female and male students.\ud
METHODS:\ud
A cross-sectional survey; 3,706 undergraduate students (2,699 females, 765 males) from seven universities in the UK completed a self-administered questionnaire that assessed socio-demographic, lifestyle, well-being and BIC based on the Body Shape Questionnaire developed by Cooper et al. Multifactorial logistic regression analysis examined the odds ratios for the association between four increasing levels of BIC as the dependent variables (no BIC, mild BIC, moderate BIC and marked BIC) on the one hand, and the socio-demographic (gender, age, year at university), lifestyle (physical activity, nutrition) and mental well-being variables (quality of life, perceived stress, perceived health, depressive symptoms) on the other.\ud
RESULTS:\ud
More females (35%) than males (8%) reported being moderately or markedly concerned with their body image. For both genders, BIC was associated with a higher level of depressive symptoms and to variable extents, with nutrition and year at university. Females' BICs were exclusively associated with low perceived health, higher perceived stress, studies in general as a stressor, and low physical activity. In contrast, males' BIC were found to be exclusively associated with low quality of life and with older age.\ud
CONCLUSIONS:\ud
Health promoting strategies and activities should address the co-occurrence of depressive symptoms and BIC and should moreover pay attention to the gender-specific correlates of BIC for tailoring evidence based interventions for females and for males
Beyond climate change and health: Integrating broader environmental change and natural environments for public health protection and promotion in the UK
This is the final version of the article. Available from MDPI via the DOI in this record.Increasingly, the potential short and long-term impacts of climate change on human health and wellbeing are being demonstrated. However, other environmental change factors, particularly relating to the natural environment, need to be taken into account to understand the totality of these interactions and impacts. This paper provides an overview of ongoing research in the Health Protection Research Unit (HPRU) on Environmental Change and Health, particularly around the positive and negative effects of the natural environment on human health and well-being and primarily within a UK context. In addition to exploring the potential increasing risks to human health from water-borne and vector-borne diseases and from exposure to aeroallergens such as pollen, this paper also demonstrates the potential opportunities and co-benefits to human physical and mental health from interacting with the natural environment. The involvement of a Health and Environment Public Engagement (HEPE) group as a public forum of "critical friends" has proven useful for prioritising and exploring some of this research; such public involvement is essential to minimise public health risks and maximise the benefits which are identified from this research into environmental change and human health. Research gaps are identified and recommendations made for future research into the risks, benefits and potential opportunities of climate and other environmental change on human and planetary health.The research was funded in part by the National Institute for Health Research Health Protection
Research Unit (NIHR HPRU) in Environmental Change and Health at the London School of Hygiene and
Tropical Medicine in partnership with Public Health England (PHE), and in collaboration with the University of
Exeter, University College London, and the Met Office (HPRU-2012-10016); the UK Medical Research Council
(MRC) and UK Natural Environment Research Council (NERC) for the MEDMI Project (MR/K019341/1, https:
//www.data-mashup.org.uk); the Economic and Social Research Council (ESRC) Project (ES/P011489/1); and the
NIHR Knowledge Mobilisation Research Fellowship for Maguire
A comparison of weather variables linked to infectious disease patterns using laboratory addresses and patient residence addresses
Background: To understand the impact of weather on infectious diseases, information on weather parameters at patient locations is needed, but this is not always accessible due to confidentiality or data availability. Weather parameters at nearby locations are often used as a proxy, but the accuracy of this practice is not known. Methods: Daily Campylobacter and Cryptosporidium cases across England and Wales were linked to local temperature and rainfall at the residence postcodes of the patients and at the corresponding postcodes of the laboratory where the patient’s specimen was tested. The paired values of daily rainfall and temperature for the laboratory versus residence postcodes were interpolated from weather station data, and the results were analysed for agreement using linear regression. We also assessed potential dependency of the findings on the relative geographic distance between the patient’s residence and the laboratory. Results: There was significant and strong agreement between the daily values of rainfall and temperature at diagnostic laboratories with the values at the patient residence postcodes for samples containing the pathogens Campylobacter or Cryptosporidium. For rainfall, the R-squared was 0.96 for the former and 0.97 for the latter, and for maximum daily temperature, the R-squared was 0.99 for both. The overall mean distance between the patient residence and the laboratory was 11.9 km; however, the distribution of these distances exhibited a heavy tail, with some rare situations where the distance between the patient residence and the laboratory was larger than 500 km. These large distances impact the distributions of the weather variable discrepancies (i.e. the differences between weather parameters estimated at patient residence postcodes and those at laboratory postcodes), with discrepancies up to ±10 °C for the minimum and maximum temperature and 20 mm for rainfall. Nevertheless, the distributions of discrepancies (estimated separately for minimum and maximum temperature and rainfall), based on the cases where the distance between the patient residence and the laboratory was within 20 km, still exhibited tails somewhat longer than the corresponding exponential fits suggesting modest small scale variations in temperature and rainfall. Conclusion: The findings confirm that, for the purposes of studying the relationships between meteorological variables and infectious diseases using data based on laboratory postcodes, the weather results are sufficiently similar to justify the use of laboratory postcode as a surrogate for domestic postcode. Exclusion of the small percentage of cases where there is a large distance between the residence and the laboratory could increase the precision of estimates, but there are generally strong associations between daily weather parameters at residence and laboratory
Hybridization in parasites: consequences for adaptive evolution, pathogenesis and public health in a changing world
[No abstract available
Pathogen seasonality and links with weather in England and Wales: A big data time series analysis
This is the final version. Available on open access from BMC via the DOI in this record.Background: Many infectious diseases of public health importance display annual seasonal patterns in their incidence. We aimed to systematically document the seasonality of several human infectious disease pathogens in England and Wales, highlighting those organisms that appear weather-sensitive and therefore may be influenced by climate change in the future. Methods: Data on infections in England and Wales from 1989 to 2014 were extracted from the Public Health England (PHE) SGSS surveillance database. We conducted a weekly, monthly and quarterly time series analysis of 277 pathogen serotypes. Each organism's time series was forecasted using the TBATS package in R, with seasonality detected using model fit statistics. Meteorological data hosted on the MEDMI Platform were extracted at a monthly resolution for 2001-2011. The organisms were then clustered by K-means into two groups based on cross correlation coefficients with the weather variables. Results: Examination of 12.9 million infection episodes found seasonal components in 91/277 (33%) organism serotypes. Salmonella showed seasonal and non-seasonal serotypes. These results were visualised in an online Rshiny application. Seasonal organisms were then clustered into two groups based on their correlations with weather. Group 1 had positive correlations with temperature (max, mean and min), sunshine and vapour pressure and inverse correlations with mean wind speed, relative humidity, ground frost and air frost. Group 2 had the opposite but also slight positive correlations with rainfall (mm, > 1 mm, > 10 mm). Conclusions: The detection of seasonality in pathogen time series data and the identification of relevant weather predictors can improve forecasting and public health planning. Big data analytics and online visualisation allow the relationship between pathogen incidence and weather patterns to be clarified.Medical Research Council (MRC)National Institute for Health Research (NIHR)National Institute of Health Research (NIHR
Seasonality and the effects of weather on Campylobacter infections
Background Campylobacteriosis is a major public health concern. The weather factors that influence spatial and seasonal distributions are not fully understood. Methods To investigate the impacts of temperature and rainfall on Campylobacter infections in England and Wales, cases of Campylobacter were linked to local temperature and rainfall at laboratory postcodes in the 30 days before the specimen date. Methods for investigation included a comparative conditional incidence, wavelet, clustering, and time series analyses. Results The increase of Campylobacter infections in the late spring was significantly linked to temperature two weeks before, with an increase in conditional incidence of 0.175 cases per 100,000 per week for weeks 17 to 24; the relationship to temperature was not linear. Generalized structural time series model revealed that changes in temperature accounted for 33.3% of the expected cases of Campylobacteriosis, with an indication of the direction and relevant temperature range. Wavelet analysis showed a strong annual cycle with additional harmonics at four and six months. Cluster analysis showed three clusters of seasonality with geographic similarities representing metropolitan, rural, and other areas. Conclusions The association of Campylobacteriosis with temperature is likely to be indirect. High-resolution spatial temporal linkage of weather parameters and cases is important in improving weather associations with infectious diseases. The primary driver of Campylobacter incidence remains to be determined; other avenues, such as insect contamination of chicken flocks through poor biosecurity should be explored
Impact of Dreissena fouling on the physiological condition of native and invasive bivalves : interspecific and temporal variations
The impact of Dreissena fouling on unionids
has hardly been studied in Europe, despite the fact
that in some ecosystems (e.g. Lake Balaton, Hungary)
infestations of several hundreds to a thousand individuals
per unionid have been observed. At present,
the zebra mussel Dreissena polymorpha is a dominant
species in Lake Balaton and in the last decade three
other invasive bivalves were introduced, potentially
increasing the pressure on native unionid survival. We
examined whether the fouling of dreissenids (zebra
and quagga (D. rostriformis bugensis) mussels) has a
negative impact on native (Anodonta anatina, Unio
pictorum and U. tumidus) and invasive (Corbicula
fluminea and Sinanodonta woodiana) bivalves and
whether there are any interspecific and temporal
variations in fouling intensity and physiological
condition measured by standard condition index and
glycogen content. A significant negative impact was detected on native unionids only in July and September
(no impact was detected in May), when the fouling
rate was high. For invasive species, a significant
negative impact was detected on S. woodiana with a
high level of dressenid infestation; whereas no significant
impact was detected on C. fluminea. Overall, this
study confirms that Dreissena may threaten unionid
species including the invasive S. woodiana, although
high interspecific and temporal variations were
observed. This situation should be taken into account
in future ecological and conservational assessments
because species respond differently to Dreissena
fouling and effects seem to be more pronounced in
late summer/early autumn. In addition, this study
provides the first evidence that the invasive C.
fluminea appear to be less vulnerable to dressenid
fouling.The study was supported by the Hungarian Scientific Fund (KTIA-OTKA) under the contract No. CNK80140
The Extracellular Matrix Component Psl Provides Fast-Acting Antibiotic Defense in Pseudomonas aeruginosa Biofilms
Bacteria within biofilms secrete and surround themselves with an extracellular matrix, which serves as a first line of defense against antibiotic attack. Polysaccharides constitute major elements of the biofilm matrix and are implied in surface adhesion and biofilm organization, but their contributions to the resistance properties of biofilms remain largely elusive. Using a combination of static and continuous-flow biofilm experiments we show that Psl, one major polysaccharide in the Pseudomonas aeruginosa biofilm matrix, provides a generic first line of defense toward antibiotics with diverse biochemical properties during the initial stages of biofilm development. Furthermore, we show with mixed-strain experiments that antibiotic-sensitive “non-producing” cells lacking Psl can gain tolerance by integrating into Psl-containing biofilms. However, non-producers dilute the protective capacity of the matrix and hence, excessive incorporation can result in the collapse of resistance of the entire community. Our data also reveal that Psl mediated protection is extendible to E. coli and S. aureus in co-culture biofilms. Together, our study shows that Psl represents a critical first bottleneck to the antibiotic attack of a biofilm community early in biofilm development.National Institutes of Health (U.S.). National Institute of Environmental Health Sciences (Training Grant in Toxicology 5 T32 ES7020-37
Estimating the prevalence of food risk increasing behaviours in UK kitchens
© 2017 Jones et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Foodborne disease poses a serious threat to public health. In the UK, half a million cases are linked to known pathogens and more than half of all outbreaks are associated with catering establishments. The UK Food Standards Agency (FSA) has initiated the UK Food Hygiene Rating Scheme in which commercial food establishments are inspected and scored with the results made public. In this study we investigate the prevalence of food risk increasing behaviours among chefs, catering students and the public. Given the incentive for respondents to misreport when asked about illegal or illicit behaviours we employed a Randomised Response Technique designed to elicit more accurate prevalence rates of such behaviours. We found 14% of the public not always hand-washing immediately after handling raw meat, poultry or fish; 32% of chefs and catering students had worked within 48 hours of suffering from diarrhoea or vomiting. 22% of the public admitted having served meat “on the turn” and 33% of chefs and catering students admitted working in kitchens where such meat was served; 12% of the public and 16% of chefs and catering students admitted having served chicken at a barbeque when not totally sure it was fully cooked. Chefs in fine-dining establishment were less likely to wash their hands after handling meat and fish and those who worked in award winning restaurants were more likely to have returned to work within 48 hours of suffering from diarrhoea and vomiting. We found no correlation between the price of a meal in an establishment, nor its Food Hygiene Rating Score, and the likelihood of any of the food malpractices occurring
- …
