195 research outputs found

    Nonlinear Gaussian process tomography with imposed non-negativity constraints on physical quantities for plasma diagnostics

    Get PDF
    ORCID 0000-0002-6479-049XWe propose a novel tomographic method, nonlinear Gaussian process tomography (nonlinear GPT), that uses the Laplace approximation to impose constraints on non-negative physical quantities, such as the emissivity in plasma optical diagnostics. While positive-valued posteriors have previously been introduced through sampling-based approaches in the original GPT method, our alternative approach implements a logarithmic Gaussian process (log-GP) for faster computation and more natural enforcement of non-negativity. The effectiveness of the proposed log-GP tomography is demonstrated through a case study using the Ring Trap 1 device, where log-GPT outperforms existing methods, standard GPT, and the minimum Fisher information methods in terms of reconstruction accuracy. The results highlight the effectiveness of nonlinear GPT for imposing physical constraints in applications to an inverse problem.journal articl

    Valley filters using graphene blister defects from first principles

    Full text link
    Valleytronics, which makes use of the two valleys in graphenes, attracts considerable attention and a valley filter is expected to be the central component in valleytronics. We propose the application of the graphene valley filter using blister defects to the investigation of the valley-dependent transport properties of the Stone--Wales and blister defects of graphenes by density functional theory calculations. It is found that the intervalley transition from the K\mathbf{K} valley to the K\mathbf{K}^\prime valleys is completely suppressed in some defects. Using a large bipartite honeycomb cell including several carbon atoms in a cell and replacing atomic orbitals with molecular orbitals in the tight-binding model, we demonstrate analytically and numerically that the symmetry between the A and B sites of the bipartite honeycomb cell contributes to the suppression of the intervalley transition. In addition, the universal rule for the atomic structures of the blisters suppressing the intervalley transition is derived. Furthermore, by introducing additional carbon atoms to graphenes to form blister defects, we can split the energies of the states at which resonant scattering occurs on the K\mathrm{K} and K\mathrm{K}^\prime channel electrons. Because of this split, the fully valley-polarized current will be achieved by the local application of a gate voltage.Comment: 19 pages, 15 figure

    Measurement of electrostatic potential fluctuation using heavy ion beam probe in large helical device

    Get PDF
    Heavy ion beam probe (HIBP) for large helical device (LHD) has been improved to measure the potential fluctuation in high-temperature plasmas. The spatial resolution is improved to about 10 mm by controlling the focus of a probe beam. The HIBP is applied to measure the potential fluctuation in plasmas where the rotational transform is controlled by electron cyclotron current drive. The fluctuations whose frequencies change with the time constant of a few hundreds of milliseconds and that with a constant frequency are observed. The characteristics of the latter fluctuation are similar to those of the geodesic acoustic mode oscillation. The spatial profiles of the fluctuations are also obtained

    ECCD Experiment Using an Upgraded ECH System on LHD

    Get PDF
    Electron cyclotron current drive (ECCD) is an attractive tool for controlling plasmas. In the large helical device (LHD), ECCD experiments have been performed by using an EC-wave power source, gyrotron, with a frequency of 84 GHz. The maximum driven current was ?9 kA with 100 kW injection power to plasma and 8 s duration of EC-wave pulse. These years, high-power and long-pulse 77 GHz gyrotrons were newly installed. An ECCD experiment with 775 kW injection power was performed. The 77 GHz waves of 8 s pulse duration sustained the plasmas. The EC-wave beam direction was scanned toroidally, keeping the beam direction aiming at the magnetic axis in X-mode polarization. In spite of the change in the EC-wave beam direction, plasma parameters such as the line-average electron density, the central electron temperature and the plasma stored energy were kept nearly the same values for the discharges, ?0.3 × 1019 m?3, ?3 keV and ?30 kJ, except for the plasma current. The plasma current showed a systematic change with the change in the beam direction for ECCD, and at an optimum direction with N// ? ?0.3, the plasma current reached its maximum, ?40 kA. Also, current drive efficiency normalized with density and power was improved by 50% compared with that at the former 84 GHz ECCD experiment

    Present Status in the Development of 6 MeV Heavy Ion Beam Probe on LHD

    Get PDF
    In order to measure the potential in Large Helical Device (LHD), we have been developing a heavy ion beam probe (HIBP). For probing beam, gold beam is used, which is accelerated by a tandem accelerator up to the energy of 6 MeV. The experiments for calibration of beam orbit were done, and experimental results were compared with orbit calculations. The experimental results coincided fairly with the calculation results. After the calibration of the beam orbit, the potential in plasma was tried to measure with the HIBP. The experimental data showed positive potential in a neutral beam heating phase on the condition of ne ? 5 × 10^18 m^-3, and the increase of potential was observed when the additional electron cyclotron heating was applied to this plasma. The time constant for this increase was about a few tens ms, which was larger than a theoretical expectation. In the spatial position of sample volume, we might have an ambiguity in this experiment

    Electro-optic Bdot probe measurement of magnetic fluctuations in plasma

    Get PDF
    0000-0001-8457-5570We propose a combined use of a Pockels electro-optic sensor with a pickup loop coil (Bdot probe) for the measurement of magnetic fluctuations in plasmas. In this method, induced fluctuating voltage on the coil loop is converted into an optical signal by a compact electro-optic sensor in the vicinity of the measurement point and is transferred across optical fiber that is unaffected by electric noise or capacitive load issues. Compared with conventional Bdot probes, the electro-optic Bdot probe (1) is electrically isolated and free from noise pickup caused by the metallic transmission line and (2) can be operated at a higher-frequency range because of the smaller capacitance of the operation circuit, both of which are suitable for many plasma experiments. Conversely, the sensitivity of the current electro-optic Bdot probe arrangement is still significantly lower than that of conventional Bdot probes. A preliminary measurement result with the electro-optic Bdot probe showed the detection of a magnetic fluctuation signal around the cyclotron frequency range in the RT-1 magnetospheric plasma experiment.journal articl

    Q-band high-performance notch filters at 56 and 77 GHz notches for versatile fusion plasma diagnostics

    Get PDF
    A six-pole Q-band waveguide filter with a notch frequency above the Q-band has been developed for plasma diagnostics. The previous paper [Nishiura et al., J. Instrum. 10, C12014 (2015)] reported that the notch frequency exists within the standard band. In this study, the newly required notch filter extends the function, which prevents a thorny wave from being mixed into an instrument beyond the standard bandwidth of the waveguide. The mode control technique for cavities realizes a deep and sharp filter shape for Q-band notch filters with 56 and 77 GHz notches, respectively. The former filter has an attenuation more than 50 dB at 56.05 GHz and a bandwidth of 1.1 GHz at −3 dB. The latter filter has an attenuation more than 55 dB at 76.95 GHz and a bandwidth of 1.6 GHz at −3 dB. The electron cyclotron emission imaging and the electron cyclotron emission (ECE) diagnostics for the Q-band implemented a pair of the fabricated filters and demonstrated the ECE measurement successfully in the intense stray radiation from a 56 GHz gyrotron

    Calibration of coherence imaging spectroscopy using spectral line sources

    Get PDF
    Coherence imaging spectroscopy (CIS) measures the two-dimensional profiles of both ion temperature and ion velocity in plasmas. The interferometric technique is realized by a certain relation between the phase and the wavelength of light emerging from a birefringent crystal. The calibration for the CIS system requires monochromatic and tunable light sources near the He II line (468.6 nm) or C III line (465 nm) where the CIS measures. In this research, the CIS system has been upgraded by implementing an electron multiplier CCD and a CIS cell. A monochromator validates the linearity of the phase relation on the wavelength near the He II line. As an in situ calibration at the Ring Trap 1 plasma device, two spectral lines of Ti and Zn lamps obtain the accurate dispersion function of phase. It is found that a simple method with two spectral lines is reliable and sufficient for the calibration

    Anisotropy in broad component of Hα\alpha line in the magnetospheric device RT-1

    Full text link
    Temperature anisotropy in broad component of Hα\alpha line was found in the ring trap 1 (RT-1) device by Doppler spectroscopy. Since hot hydrogen neutrals emitting a broad component are mainly produced by charge exchange between neutrals and protons, the anisotropy in the broad component is the evidence of proton temperature anisotropy generated by betatron acceleration
    corecore