78 research outputs found

    Cathepsin D non-proteolytically induces proliferation and migration in human omental microvascular endothelial cells via activation of the ERK1/2 and PI3K/AKT pathways

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordEpithelial ovarian cancer (EOC) frequently metastasises to the omentum, a process that requires pro-angiogenic activation of human omental microvascular endothelial cells (HOMECs) by tumour-secreted factors. We have previously shown that ovarian cancer cells secrete a range of factors that induce pro-angiogenic responses e.g. migration, in HOMECs including the lysosomal protease cathepsin D (CathD). However, the cellular mechanism by which CathD induces these cellular responses is not understood. The aim of this study was to further examine the pro-angiogenic effects of CathD in HOMECs i.e. proliferation and migration, to investigate whether these effects are dependent on CathD catalytic activity and to delineate the intracellular signalling kinases activated by CathD. We report, for the first time, that CathD significantly increases HOMEC proliferation and migration via a non-proteolytic mechanism resulting in activation of ERK1/2 and AKT. These data suggest that EOC cancer secreted CathD acts as an extracellular ligand and may play an important pro-angiogenic, and thus pro-metastatic, role by activating the omental microvasculature during EOC metastasis to the omentum.FORCE Cancer Charit

    Supersymmetric Charged Clouds in AdS_5

    Full text link
    We consider supersymmetric holographic flows that involve background gauge fields dual to chemical potentials in the boundary field theory. We use a consistent truncation of gauged N=8 supergravity in five dimensions and we give a complete analysis of the supersymmetry conditions for a large family of flows. We examine how the well-known supersymmetric flow between two fixed points is modified by the presence of the chemical potentials and this yields a new, completely smooth, solution that interpolates between two global AdS spaces of different radii and with different values of the chemical potential. We also examine some black-hole-like singular flows and a new non-supersymmetric black hole solution. We comment on the interpretation of our new solutions in terms of giant gravitons and discuss the implications of our work for finding black-hole solutions in AdS geometries.Comment: 31 pages, 6 figures; minor corrections, updated reference

    Engagement of people with multiple sclerosis to enhance research into the physiological effect of hyperbaric oxygen therapy

    Get PDF
    BACKGROUND: Thousands of people with multiple sclerosis (MS) have used self-administered oxygen therapy in the UK. Clinical trials have been performed, with scant evidence that people with MS have been consulted to explore how they benefit from or how to optimize this treatment. The conventional MS disease disability scores used in trials seldom reflect the effects individuals report when using oxygen therapy to treat their symptoms. METHODS: Three people with MS and the manager of an MS Centre formed a public involvement group and collaborated with clinicians and scientists to inform a lab-based study to investigate the physiological effects of oxygen therapy on microvascular brain endothelial cells. RESULTS: People with MS often use oxygen therapy at a later stage when their symptoms worsen and only after using other treatments. The frequency of oxygen therapy sessions and hyperbaric pressure is individualized and varies for people with MS. Despite direct comparisons of efficacy proving difficult, most individuals are exposed to 100% O2 at 1.5 atmosphere absolute (ATA; 1140 mmHg absolute) for 60 min. In a laboratory-based study human brain endothelial cells were exposed in vitro to 152 mmHg O2 for 60 min with and without pressure, as this equates to 20% O2 achievable via hyperbarics, which was then replicated at atmospheric pressure. A significant reduction in endothelial cells ICAM-1 (CD54) implicated in inflammatory cell margination across the blood brain barrier was observed under oxygen treatment. CONCLUSIONS: By collaborating with people living with MS, we were able to design laboratory-based experimental protocols that replicate their treatment regimens to advance our understanding of the physiological effects of hyperbaric oxygen treatment on brain cells and their role in neuroinflammation

    Astrocyte senescence may drive alterations in GFAPα, CDKN2A p14ARF, and TAU3 transcript expression and contribute to cognitive decline

    Get PDF
    The accumulation of senescent cells in tissues is causally linked to the development of several age-related diseases; the removal of senescent glial cells in animal models prevents Tau accumulation and cognitive decline. Senescent cells can arise through several distinct mechanisms; one such mechanism is dysregulation of alternative splicing. In this study, we characterised the senescent cell phenotype in primary human astrocytes in terms of SA-β-Gal staining and SASP secretion, and then assessed splicing factor expression and candidate gene splicing patterns. Finally, we assessed associations between expression of dysregulated isoforms and premature cognitive decline in 197 samples from the InCHIANTI study of ageing, where expression was present in both blood and brain. We demonstrate here that senescent astrocytes secrete a modified SASP characterised by increased IL8, MMP3, MMP10, and TIMP2 but decreased IL10 levels. We identified significant changes in splicing factor expression for 10/20 splicing factors tested in senescent astrocytes compared with early passage cells, as well as dysregulation of isoform levels for 8/13 brain or senescence genes tested. Finally, associations were identified between peripheral blood GFAPα, TAU3, and CDKN2A (P14ARF) isoform levels and mild or severe cognitive decline over a 3-7-year period. Our data are suggestive that some of the features of cognitive decline may arise from dysregulated splicing of important genes in senescent brain support cells, and that defects in alternative splicing or splicing regulator expression deserve exploration as points of therapeutic intervention in the future.This article is freely available under Open Access. Click on the Publisher URL to access the full-text

    STING-Triggered CNS Inflammation in Human Neurodegenerative Diseases

    Get PDF
    Background: Some neurodegenerative diseases have an element of neuroinflammation that is triggered by viral nucleic acids, resulting in the generation of type I interferons. In the cGAS-STING pathway, microbial and host-derived DNA bind and activate the DNA sensor cGAS, and the resulting cyclic dinucleotide, 2′3-cGAMP, binds to a critical adaptor protein, stimulator of interferon genes (STING), which leads to activation of downstream pathway components. However, there is limited work demonstrating the activation of the cGAS-STING pathway in human neurodegenerative diseases. Methods: Post-mortem CNS tissue from donors with multiple sclerosis (n = 4), Alzheimer’s disease (n = 6), Parkinson’s disease (n = 3), amyotrophic lateral sclerosis (n = 3) and non-neurodegenerative controls (n = 11) were screened by immunohistochemistry for STING and relevant protein aggregates (e.g., amyloid-β, α-synuclein, TDP-43). Human brain endothelial cells were cultured and stimulated with the STING agonist palmitic acid (1–400 μM) and assessed for mitochondrial stress (release of mitochondrial DNA into cytosol, increased oxygen consumption), downstream regulator factors, TBK-1/pIRF3 and inflammatory biomarker interferon-β release and changes in ICAM-1 integrin expression. Results: In neurodegenerative brain diseases, elevated STING protein was observed mainly in brain endothelial cells and neurons, compared to non-neurodegenerative control tissues where STING protein staining was weaker. Interestingly, a higher STING presence was associated with toxic protein aggregates (e.g., in neurons). Similarly high STING protein levels were observed within acute demyelinating lesions in multiple sclerosis subjects. To understand non-microbial/metabolic stress activation of the cGAS-STING pathway, brain endothelial cells were treated with palmitic acid. This evoked mitochondrial respiratory stress up to a ~2.5-fold increase in cellular oxygen consumption. Palmitic acid induced a statistically significant increase in cytosolic DNA leakage from endothelial cell mitochondria (Mander’s coefficient; p < 0.05) and a significant increase in TBK-1, phosphorylated transcription factor IFN regulatory factor 3, cGAS and cell surface ICAM. In addition, a dose response in the secretion of interferon-β was observed, but it failed to reach statistical significance. Conclusions: The histological evidence shows that the common cGAS-STING pathway appears to be activated in endothelial and neural cells in all four neurodegenerative diseases examined. Together with the in vitro data, this suggests that the STING pathway might be activated via perturbation of mitochondrial stress and DNA leakage, resulting in downstream neuroinflammation; hence, this pathway may be a target for future STING therapeutics

    The cranial nerves

    Get PDF
    With the exception of the olfactory and optic nerves, all cranial nerves enter or leave the brain stem. Three of the cranial nerves are purely sensory (I, II and VIII), five are motor (III, IV, VI, XI and XII) and the remaining nerves (V, VII, IX and X) are mixed. The olfactory nerve will be discussed in Chap. 14, the optic nerve in Chap. 8 and the cochlear nerve in Chap. 7. The nuclei of the cranial nerves are arranged in an orderly, more or less columnar fashion in the brain stem: motor nuclei, somatomotor, branchiomotor and visceromotor (parasympathetic), derived from the basal plate, are located medially, whereas sensory nuclei, somatosensory, viscerosensory and vestibulocochlear, derived from the alar plate, are found lateral to the sulcus limitans. The cranial nerves innervate structures in the head and neck as well as visceral organs in the thorax and abdomen. The cranial nerves control eye movements, mastication, vocalization, facial expression, respiration, heart rate and digestion. One or several of the cranial nerves are often involved in lesions of the brain stem, of which the location can usually be determined if the topographical anatomy of the cranial nerves and their nuclei is known. Several examples are shown in Clinical cases. Following a few notes on the development of the brain stem and congenital cranial dysinnervation disorders (Sect. 6.2), the following structures will be discussed: (1) ocular motor nerves and the effects of lesions of individual ocular motor nerves (Sect. 6.3); (2) eye movements and some disorders affecting them (Sect. 6.4); (3) the trigeminal nerve and changes in the blink reflex (Sect. 6.5); (4) the facial nerve and peripheral facial nerve paralysis (Sect. 6.6); (5) the gustatory system (Sect. 6.7); (6) the vestibulocochlear nerve, vestibular control and some peripheral and central vestibular syndromes (Sect. 6.8); and (7) the last four cranial nerves and some disorders affecting them (Sects. 6.9 and 6.10). The English terms of the Terminologia Neuroanatomica are used throughout.</p
    corecore